

Personal Designer

User Programming Language
(UPL)

Revision 6.0

User Reference Guide

Chapter 4

Statements and Intrinsics

Statements and Intrinsics

Abs 4-5 DigStr 4-51
Accept 4-6 DirFn 4-52
AccessCode 4-11 DiskFree 4-55
ACos 4-14 Display 4-56
AddFnExt 4-15 DOS 4-58
Ang3P 4-16 Draw 4-59
ASCII 4-17 DrawText 4-60
ASin 4-18 Dsubrec 4-61
AskModifiers 4-19 Echo 4-62
Asmlnt 4-20 EntlntOf 4-63
Assignment 4-21 EntMask 4-65
ATan 4-23 EntPntOn 4-67
ATan2 4-24 EnvVar 4-69
AWinClear 4-25 Erase 4-70
BigMibList 4-26 Exist 4-72
Boolean 4-28 Exit 4-73
Boolean 4-29 Extract 4-75
Char 4-30 File 4-76
Clear 4-31 FillPoly 4-77
Close 4-32 FindFn 4-79
CntrIToNum 4-33 FindMenu 4-81
$CodeSize 4-34 FindProp 4-82
Const 4-35 Flushlnput 4-84
Coord 4-37 Func 4-85
Coord 4-39 GetBit 4-87
Cos 4-40 GetC 4-88
Date 4-41 GetCPL 4-89
DefineAW 4-42 GetCur 4-90
DefineModifier 4-45 GetDig 4-91
DegRad 4-48 GetEnd 4-92
Delete 4-49 GetEnt 4-93
Device 4-50

4-2

Statements and Intrinsics

GetHelp 4-95 MapMV 4-142
GetKbdChar 4-96 MapTo 4-143
GetLayer 4-97 MapTT 4-145
GetMenulnfo 4-98 MapVM 4-146
GetModifier 4-99 Mat3P 4-147
GetSerialNum 4-100 Max 4-148
GetTagField 4-101 MemAvail 4-149
GetView 4-102 MenuCmd 4-150
GoTo 4-103 MibTag 4-151
Group 4-104 Min 4-152
GText 4-106 MirEnt 4-153
GWinClear 4-108 MirEntCopy 4-154
HilightEnt 4-109 MirPnt 4-155
HilightMenu 4-110 Modl 4-156
IDiskFree 4-111 ModI4 4-157
If - Then - Else - EndIf 4-112 Modify 4-158
$lnclude 4-115 ModR 4-163
Index 4-116 MouseInp 4-164
InputStr 4-117 MovEnt 4-165
Insert 4-118 MovEntCopy 4-166
Integer 4-123 NullTransform 4-167
Integer 4-124 NumToCntrl 4-168
Integer4 4-125 Open 4-169
Integer4 4-127 Pagelnfo 4-172
LastDig 4-128 Pi 4-174
LinlntOf 4-129 PixToRowCol 4-175
Ln 4-130 PntPrp 4-176
Log 4-131 PntPrpV 4-177
Loop-End Loop 4-132 PolyArea 4-178
Map2Px 4-134 PolyWin 4-179
Map2PxN 4-135 Print 4-180
MapCPLM 4-136 Proc 4-182
MapFrom 4-137 Process 4-184
MaPix2 4-139 Product 4-185
MaPix2N 4-140 PutCur 4-187
MapMCPL 4-141 RadDeg 4-188
Read 4-189

4-3

Statements and Intrinsics

ReadCArray, Size4 4-229
ReadlArray, Sleep 4-230
ReadRArray 4-195 String 4-232
Real 4-200 String 4-234
Real 4-202 StrWide 4-236
Return (for Functions) 4-203 SqRt 4-238
Return(for Procedures) 4-204 SysVarI 4-239
RmvChr 4-205 SysVarI4 4-244
Rnd 4-206 SysVarR 4-245
RotEnt 4-207 SysVarS 4-248
RotEntCopy 4-208 Tan 4-250
RotMat 4-209 TagMib 4-251
RotPnt 4-210 TextColor 4-252
RowColAW 4-211 Time 4-253
RowColToPix 4-212 Transpose 4-254
RpntEnt 4-213 TwoPi 4-255
SclEnt 4-214 UpperCase 4-256
SclEntCopy 4-215 VCross 4-257
Send 4-216 VDot 4-258
SetBit 4-219 Verify 4-259
SetHelp 4-220 VLen 4-265
SetLayer 4-222 Vnit 4-266
SetMenuInfo 4-223 Window 4-267
SetTagField 4-225 Write 4-269
ShadeColor 4-226 WriteCArray,
Sin 4-227 WritelArray,
Size 4-228 WriteRArray 4-273

4-4

Statements and Intrinsics

Abs

Type

Intrinsic Function Arithmetic

Purpose

Converts an integer, integer4 or real expression to its absolute value. This
function returns an integer, integer4 or real value, depending on the input.

Syntax

Abs(expr)

Parameters

expr: Integer, integer4 or real expression (input)
 Specifies the integer or real expression to convert.

4-5 Statements and Intrinsics

Statements and Intrinsics

Accept

Type

Statement Input/Output (Window)

Purpose

Allows the user to input numerical, coordinate, or string data and assign it
to a given variable. You can qualify the data by selecting keywords and
expressions.

Syntax

Accept var dataqual(expr,...),...

Keyword modifiers

var: An integer, integer4, real, coordinate, or string variable. The

 input data is returned in the var variable. The data type declared

 for var determines the type of data the program can accept.
 When the program is run, the data returned in var will be
 echoed in different ways, depending on the data type of var.

 When var is integer, integer4, real, or string, the input data is
 echoed to the ACCEPT window, which is the command
 window by default. Use the AccptWin systern variable to
 change the ACCEPT window. See DefineAW and Appendix
 B, "System Variabies," for more information.
 When the ENTANY and ENTLIST keywords are selected,
 the user must digitize an entity in the graphics window. This
 is echoed by highlighting the entity. In this case, var is
 declared as an integer4, which is an exception to the rule
 noted above.
 When var is declared as a coordinate variable, the user must
 digitize a location in the graphics window. This is echoed by
 a digitizing mark, which is the small x in the window. The
 user cannot enter coordinates through the keyboard, tablet,
 or on-screen menus-see GetDig for more information. The

 value returned in var is relative to the currently selected
 view rather than model space.

4-6 UPL Revision 6.0

Statements and Intrinsics

The ASCII value of the last character input into an Accept
statement is automatically placed in the system variable
LastChar. For more information about system variables,
refer to Appendix B, "System Variables."

dataqual: Optional keyword. These keywords allow you to qualify the
 data to be accepted. The keywords must be separated by
 commas or spaces, and can be given in any order. Refer to
 the tabie below to see which keywords can be used with the
 different variable types.

 Box(cexpr1, cexpr2) Coordinate
 Limits acceptable digitized points to the inside of the box
 specified by cexpr1 and cexpr2. These are the lower left and
 upper right corners of the box. Coordinate values are
 interpreted as the currently selected view space coordinates.

 Entany Integer4
 Allows selection of entities by digitizing in the graphics
 window. Entany returns an MIB number for the entity you
 digitize. This MIB number can then be used in the database
 statements and the database access intrinsic procedures and
 functions. See Chapter 3, Functional Listing of Statements
 and Intrinsics for more information.

 Entlist(i4expr1, i4array(iexpr2)) Integer4
 Allows selection of specific entities by digitizing in the
 graphics window. Only the entities with MIB numbers
 specified in the i4array parameter may be selected; i4array

 must be declared as an integer array with at least i4expr1

 elements. Replace iexpr2 with the first element that is to be

 checked in i4array. When the program is run. if any entity is

 picked which is not in the list i4array, the system sounds a
 beep and then waits for the user to select the next entity.
 Otherwise, the MIB number of the selected entity is
 returned. This MIB number can then be used in the database
 statements and the database access intrinsic procedures and
 functions. See Chapter 3, Functional Listing of Statements
 and Intrinsics.

4-7 Statements and Intrinsics

Statements and Intrinsics

Exact(sexpr) String
Accepts the exact sequence of characters given in the string
expression, up to 250 characters. When you use this
keyword, no other keywords can be given.

You can use two consecutive Exact keywords. This allows
you to accept an answer choice such as "yes" and "no." lt
also allows you to specify the same sexpr twice-in upper
and lower case-so that the program can be run with the
CAPS lock key on or off. lf the user types a space, the next
character in the string expression is automatically accepted;
this feature is useful for writing tutorials. lf the user types a
character that is not in the expression, the system sounds a
beep and then waits for the next character to be entered.

In(sexpr) String
Each character entered must be one of the characters
specified in a string expression up to 100 characters. lf the
user types a character that is not in the expression, the
system sounds a beep and then waits for the next character to
be entered.

Last(sexpr) Any Type
Speeifies the character(s) that will end data input. Input is
terrninated when the user enters any of the charaeters listed
in sexpr. Note that the terminating character is not put in var;
rather the system variable LastChar is assigned the ASCII

value of the last character entered. The sexpr string may
contain a maximum of 100 characters.

Macro(iexpr) Integer
Designates the keyboard macro set to be used by the Accept
statement. Keyboard macro sets define key assignments for
the keyboard. If the iexpr macro set is not found, the
program will use macro set one. Refer to the PDMAC.DEF
file in the Personal Designer directory for a description of
keyboard macro sets.

4-8 UPL Revision 6.0

Statements and Intrinsics

Max(sexpr) String
Accepts only characters whose ASCII value is less than or
equal to the first character specified in the string expression.
The string expression may contain a maximum of 100
characters.

Min(sexpr) String
Accepts only characters whose ASCII value is greater than
or equal to the first character specified in the string
expression. The string expression may contain a maximum
of 100 characters.

Newline Any Type
Starts a new line in the Accept window after data is input.
Data input after this statement will be echoed on this new
line. All prompts output after this statement will also be
output on the new line.

Note that the Print, Display, and Send windows default to the
command window. The output from these windows will also appear
on the new line if their system variables have not been changed.

Prompt(sexpr) Any Type

Before data is accepted, the program prints sexpr in the Accept
window to prompt the user for input. The string may contain a
maximum of 500 characters.

Size(sexpr) String
Limits the number of characters the user can enter.

Examples

ACCEPT S1 SIZE(1), IN(“ABCDEPQ“)

ACCEPT X PROMPT("Input X dimension") NEWLINE

ACCEPT S1 SIZE(1), MIN("A"), MAX("Z")\
 Prompt ('Enter a letter of the alphabet')

4-9 Statements and Intrinsics

Statements and Intrinsics

-- The following program a displalys a menu and
-- then prompts the user to enter a one-character
-- menu choice. only one of the letters in the
-- menu is accepted. The program will not continue
-- until one of them is entered.

proc main
 string S1:1
 real X
 integer Num
 display
 Menu:

 (A) Open Part
 (B) Draw B size border
 (C) Draw C size border
 (D) Draw D size border
 (E) Draw E size border
 (P) Print text file
 (Q) Quit
$
 accept S1 in('ABCEDPQ') prompt('Choice: ´)\
 newline
 -- code to execute menu choices goes here
end proc
--
--
-- This program demonstrates an ACCEPT statement
-- using error checking on input.

proc main
 integer num
 loop
 accept num prompt('Enter number (1-10): ´)
 exit when (num => 1) and (num <= 10)
 print
 print 'Number out of range. Try again.'
 end loop
end proc
--

4-10 UPL Revision 6.0

Statements and Intrinsics

AccessCode

Type

Intrinsic Function Operating System

Purpose

Returns a unique access code when given a key and a serial number.
AccessCode provides a method for UPL program developers to protect
their programs from unauthorized use. This function returns a
32-character string which contains only uppercase letters.

Syntax

AccessCode(keystr, serialstr)

Parameters

keystr: String expression of 32 characters (input)
 This parameter specifies the key used to make the access
 code. Only the first 32 characters in the string will be used.
 The string can be shorter, however, it is recommended that it
 be at least 10 characters in length. The ke.ystr parameter can
 contain any characters between the ASCII values 32 (space),
 and 126 (~).
serialstr: String expression (input)
 This specifies the six-digit serial number. On DOS systems
 it is the Computervision guard box number. On UNIX
 workstations, it may be the hostid or a portion of the
 Ethemet address. The serial number can be retrieved using
 the GetSerialNum intrinsic function.

AccessCode protects programs in the following way:
1 . The vendor of the UPL program creates the keystring, which is

known only to him.
2. When the UPL program is installed, the user provides the vendor

with the number of his Computervision guard box.
3. The vendor creates a program that uses this routine, the box

number, and the keystring to generate the user code. He returns
this code to the user who puts it in a operating system (DOS or
UNIX) environment

 variable or the CVOPTION.FIL file.

4-11 Statements and Intrinsics

Statements and Intrinsics

4. The program should contain a series of statements which test
the user code. lf the test fails, the program should give an
error message and abort. See the example below.

Examples

-- This program demonstrates how to use the
-- AccessCode routine to protect your software.
-- It contains two functions. The first one uses
-- an environment variable to hold the User Code.
-- The second one uses the file CVOPTION.FIL.
-- Either method may be used.

func CheckCodesEnvVar return Boolean

string KeyStr:32
string UserCode:32

KeyStr = 'This is my keystring'
EnvVar('USERCODE', UserCode)

if UserCode <> AccessCode(KeyStr,\
 GetSerialNum()) then
 print 'invalid guard box or access code'
 return False
else
 return True
end if

end func

func CheckCodesCVOpt return Boolean
 string KeyStr:32
 string UserCode:32
 string AccCode:32
 file OptFile

4-12 UPL Revision 6.0

Statements and Intrinsics

 KeyStr = 'This is my keystring'
 AccCode = AccessCode(KeyStr, GetSerialNum())
 open OptFile, '\cvoption.fil'
 loop
 read OptFile, UserCode
 exit when OptFile.EOF
 if UserCode = AccCode then
 return True
 end if
 end loop

 print 'invalid guard box or access code'
 return False
end func

proc main
 If Not CheckCodesEnvVar() then
 return
 endif
 If Not CheckCodesCVOpt() then
 return
 endif
end proc

-- This program demonstrates how to generate a
-- User Code to put in an enviro=ent variable
-- or the file, CVOPTION.FIL

proc main

string SerialNumber:6
string KeyString:32
accept SerialNumber last('#13##3#') size(6)\
 prompt('Enter the box/host id number: ') \
 newline
return when LastChar = 3
accept KeyString last('#13##3#') size(32) \
 prompt('Enter your key string: ')
 newline
return when LastChar = 3
print 'The User Code for box or host id ',
print SerialNumber,': '
print AccessCode(KeyString, SerialNumber)

end proc

4-13 Statements and Intrinsics

Statements and Intrinsics

ACos

Type

Intrinsic Function Trigonometric

Purpose

Returns the arccosine of a real expression. This function returns a real
value in radians.

Syntax

ACos(rexpr)

Parameters

rexpr: Real expression (input)
 This parameter specifies the real expression whose arccosine
 is returned.

4-14 UPL Revision 6.0

Statements and Intrinsics

AddFnExt

Type

Intrinsic Procedure Operating System

Purpose

Adds an extension to a file name.

Syntax

AddFnExt(filename, ext, iopt)

Parameters

filename: String variable (input/output)
 On input, this parameter specifies a file name. On output, the
 new file name is returned in this variable.
ext: String expression of 3 characters (input/output)
 This parameter specifies the file name extension that is
 added to filename. Only the first three characters are used.

 NOTE: Do not use a period in the extension.

iopt: Integer expression (input)

 The iopt parameter specifies the conditions under which ext

 is added to the filename parameter.
Values are:

 0 Tells the program to add ext filename only if it
 does not already have an extension.
 1 Tells the system to replace the existing extension
 with the one specified in the ext parameter.

Example

AddFnExt(FN, 'DAT', 1)

4-15 Statements and Intrinsics

Statements and Intrinsics

Ang3P

Type

Intrinsic Function Geometric

Purpose

Returns the angle between three points in three-dimensional space. This is
the smaller of two angles formed by the two imaginary lines which
connect the origin with the other two points. lt will always be less than pi
radians. The returned real value is in radians.

Syntax

Ang3P(pnt1, pnt2, pnt3)

Parameters

Pnt1: Coordinate expression (input)
 This parameter specifies the endpoint of the first imaginary
 line.
pnt2: Coordinate expression (input)
 This parameter specifies the vertex point of the two
 imaginary lines.

pnt3: Coordinate expression (input)
 This specifies the endpoint of the second imaginary line.

Example

A1 = Ang3P(C1, ORG1, C2)

4-16 UPL Revision 6.0

Statements and Intrinsics

ASCII

Type

Intrinsic Function Data Conversion

Purpose

Returns the ASCII value of the first character in a string. This function
returns an integer.

Syntax

ASCII(sexpr)

Parameters

sexpr: String expression (input)
 This parameter specifies the string whose ASCII value is
 returned.

4-17 Statements and Intrinsics

Statements and Intrinsics

ASin

Type

Intrinsic Function Trigonometric

Purpose

Returns the arcsine of a real expression. This function returns a real value in
radians.

Syntax

ASin(rexpr)

Parameters

rexpr: Real expression (input)
 This parameter specifies the real expression whose arcsine is
 returned.

4-18 UPL Revision 6.0

Statements and Intrinsics

AskModifiers

Type

Intrinsic Procedure User Interface

Purpose

Allows your UPL program to accept input in the modifier format used by
Personal Designer commands. Transfers controi of the UPL program to the
Personal Designer modifier processor which accepts modifiers and values from
the user. To exit the modifier processor, the user must type a colon, carriage
return, or control C. This character will then be stored in the LastChar system
variable. See the LastChar system variable, Appendix B, "System Variables."
When using AskModifiers, the modifier processor behaves the same way as it
would with a Personal Designer command. For example, the modifier processor
will only allow legal modifiers and context sensitive help is available. See
Appendix H, "Writing Personal Designer Commands," and DefineModifier and
GetModifier for more information.

Syntax

AskModifiers(modset)

Parameters

modset: Integer expression (input)
 This parameter specifies the modifier index number of the
 modifier set to use. Set modset to zero to use the modifiers
 you created with the DefineModifier procedure. Any other
 number you input will use Personal Designer's modifier
 table. See Appendix H, "Writing Personal Designer
 Commands," for more information.

Example

AskModifiers(0)

4-19 Statements and Intrinsics

Statements and Intrinsics

Asmlnt

Type

Intrinsic procedure Operating System

Purpose

Performs a DOS software interrupt. Allows UPL programs to interface
with assembly language programs or the DOS operating system.

Syntax

Asmlnt(IntNo,RegData())

Parameters

IntNo: Integer expression (input)
 Intel interrupt number to execute (0 to 255)

RegData Integer array of nine elements
 RegData(1) = AX register
 RegData(2) = BX register
 RegData(3) = CX register
 RegData(4) = DX register
 RegData(5) = SI register
 RegData(6) = DI register
 RegData(7) = DS register
 RegData(8) = ES register
 RegData(9) = CPU flags

Examples

Regs(1) = 12288 --AH = 30h, AL = 00h

AsmInt(33, Regs(1)) --DOS int21h, get DOS version
 number

4-20 UPL Revision 6.0

Statements and Intrinsics

Assignment

Type

Statement Assignment

Purpose

Gives a value to a variable, variable attribute, or array element.

Syntax

var = expr

where:

var: Name of the variable to assign a value to. Variables of file
 type may not be assigned; however, file attribute variables
 may be assigned.
expr: Expression of the same data type as var.

NOTE: expr must be the same data type as var. Use the data type

conversion intrinsic functions to convert expr to the correct data
 type.

4-21 Statements and Intrinsics

Statements and Intrinsics

Example

--

-- This program demonstrates some of the many
-- different forms an assignment may take.

PROC MAIN
INTEGER I(10), J, PTR(20)
REAL R, X, Y, Z, RR(15), THETA
STRING S1:80, S2:80
BOOLEAN B1, B2
COORD C1, C2, C
FILE F1

B1 = TRUE
S1 = "BEGIN" + S2 + "END"
R = X**2.0+5.0*Y/(4.0+Z)
I(2)=10
B2=FALSE
B1=NOT B1 OR B2
C.X=2.69
C=[4.0,7.93,-4.68]-C2
C=C1+C2
C.Z=-10.2
RR(J/3+1)=SIN(DEG_RAD(THETA))/4.5
X=C.Y/Z**2.0
F1.POSITION=PTR(J)
F1.POSITION=F1.POSITION+10
R=REAL(J)+2.5+REAL(5)
END PROC

4-22 UPL Revision 6.0

Statements and Intrinsics

ATan

Type

Intrinsic Function Trigonometric

Purpose

Returns the arctangent of a real expression. This function returns a real
value in radians.

Syntax

ATan(rexpr)

Parameters

rexpr: Real expression (input)
 This parameter specifies the real expression whose
 arctangent is returned.

4-23 Statements and Intrinsics

Statements and Intrinsics

ATan2

Type

Intrinsic Function Trigonometric

Purpose

Returns the arctangent of the r11r2 (or sin/cos) parameters. This function
will produce valid results even if r2 is zero. lt returns a real value in
radians.

Syntax

ATan2(r1, r2)

Parameters

r1: Real expression (input)
 This parameter specifies the sine of the angle.

r2: Real expression (input)
 This parameter specifies the cosine of the angle.

4-24 UPL Revision 6.0

Statements and Intrinsics

AWinClear

Type

Intrinsic Procedure Input/Output (Window)

Purpose

Clears the specified alphanumeric window with the currently defined
background color for that window number. The cursor is reset to the upper
left corner of the window. See DefineAW for more information.

Syntax

AWinClear(iwin)

Parameters

iwin: Integer expression (input)
 Specifies the alpha window number to be cleared. Values are
 1 through 20.

Example

-- The following example clears alphanumeric window
-- 11,the message window. Use the CLEAR statement
-- or GWinClear to clear the graphics window.

AWinClear(11)

4-25 Statements and Intrinsics

Statements and Intrinsics

BigMibList

Type

Intrinsic Function User Interface

Purpose

Returns the integer4 Master Index Block (MIB) number of a digitized
entity. BigMibList must be used with the GetEnt procedure. BigMibList
extends the capability of GetEnt. GetEnt returns a speeific number of
digitized entities, whereas BigMibList allows GetEnt to return an
unlimited number of entities. A call to BigMibList is equivalent to

accessing the miblist parameter in the GetEnt procedure.

Before you use BigMibList, make a call to GetEnt with parameters set as
described below:

 maxmib: -1

 miblist: a dummy (one element) integer4 array

 nent: an integer4 variable

 iend: an integer variable

lf you want to insert a Send statement between calls to BigMibList and
GetEnt, or between successive calls to BigMibList, make sure the Send
statement does not invoke Personal Designer commands that select
entities.

Syntax

BigMibList(ient)

Parameters

ient: Integer4 expression (input)
 This parameter specifies a position in the internal entity list.
 This position holds the MIB number of the next entity
 selected by the GetEnt procedure.

 The value of ient should not be greater than the nent value

 returned in the previous call to GetEnt. lf ient is greater than
 nent, the returned value will be invalid.

4-26 UPL Revision 6.0

Statements and Intrinsics

Example

-- The following example shows how BigMibList is
-- used with GetEnt. See the GetEnt example which
-- prompts the user for entities without using
-- BigMibList. Note that the BigMibList example can
-- access an unlimited number of entities,
-- whereas GetEnt does not:

proc main

integer4 NEnt, DummyMIBList(1), Mib, I
integer Iend, Ierr

GetEnt(-1, NEnt, DummyMIBList(1), Iend)

print ´you digged the following entities:´,
Loop I = 1 to NEnt
 Mib = BigMibList(I)
 print Mib
End Loop

RpntEnt(DummyMIBList(1),0,Ierr)

end proc

4-27 Statements and Intrinsics

Statements and Intrinsics

Boolean

Type

Statement Declaration

Purpose

Declares the name, data type, aggregate type, and initial value of a
Boolean variable. An initial value is optional. Array variables must be
declared with their maximum subscripts.
Variables of Boolean data type contain logical values of either true or false.

Syntax

Boolean bvarname = bconst 1 bvarname(iconst,...)....

Keyword modifiers

bvarname: Name of the Boolean variable. Only the first 16 characters
 are used.
bconst: Optional initial value for a Boolean scalar variable. This
 value must be a literal or named Boolean constant. If the
 variable is declared in the Group section, it will be set to this
 value once at the beginning of the program. lf the variable is
 declared in a procedure or function, it will be set to this
 value each time the procedure or function is called.
iconst: Array subscripts. These declare the variable to have
 aggregate type array. Up to five subscripts may be declared.
 The subseripts must be enclosed in parentheses. Array
 variables may not be given an initial value.

All declaration statements must occur after the Proc, Func, and Group
statements. They must appear before any other type of statements inside a
procedure or function and are the only statements allowed inside the Group
section. For more information, see Chapter 2, Program Structure, and
Appendix E, "Internal Data Format."

Examples

Boolean Done = False, BoolArr(10)
Boolean ErrorOccured, TimeOut
Boolean WaitFor = TRUE

4-28 UPL Revision 6.0

Statements and Intrinsics

Boolean

Type

Intrinsic Function Data Conversion

Purpose

Converts an integer, real, or string expression to a Boolean value.

Syntax

Boolean(expr)

Parameters

expr: Integer, real, or string expression (input)
 This parameter specifies the integer, real, or string
 expression to convert.

 For Integers
 = 0: false
 <> 0: true

 For Reals
 = 0: false
 <> 0: true

 For strings
 True if the first character is a "T," otherwise false.

4-29 Statements and Intrinsics

Statements and Intrinsics

Char

Type

Intrinsic Function Data Conversion

Purpose

Returns a one-character string which has the ASCII value of an integer
expression.

Syntax

Char(iexpr)

Parameters

iexpr: String expression of 1 character (input)
 This parameter specifies the integer expression to be
 converted to an ASCII character. See Appendix F, "ASCII
 Character Set," for more information.

4-30 UPL Revision 6.0

Statements and Intrinsics

Clear

Type

Statement Input/Output (Window)

Purpose

Clears a window.

Syntax

Clear iexpr

Keyword modifiers

iexpr: Optional expression which specifies the window number you

 want to clear. lf no iexpr is given, all windows are cleared. If

 iexpr is 11, the graphics window is cleared. To clear the
 alpha/text window number 11, use a -11 or use AWinClear.
 Values 1 through 10 clear the corresponding UPL windows.
 To clear windows 11 through 20, use the corresponding
 negative values, -1 through -10. See DefineAW for a list of
 window number assignments.

Examples

CLEAR
CLEAR 2
CLEAR PRINT_WIN

4-31 Statements and Intrinsics

Statements and Intrinsics

Close

Type

Statement Input/Output (File)

Purpose

Closes a file that has been opened with the Open statement.

Syntax

Close flvar

Keyword modifiers

flvar: File variable.
 After you close a file, you can use the file and file variable again in
 another Open statement. If you do not close a file before exiting a

function or procedure where you declared the file variable, the file
closes automatically.

Example

CLOSE DATA_FL

4-32 UPL Revision 6.0

Statements and Intrinsics

CntrIToNum

Type

Intrinsic Function Data Conversion

Purpose

Converts any non-printabie ASCII characters in a string to the format:
#ascii num# and returns the new string. This is the same form used by
Personal Designer and the UPL compiler. See NumToCntrl for more
information.

The UPL program may encounter non-printable ASCII characters when
reading from a file created by another prograrn. With many editors, you
can create ASCII characters by holding down the Ctrl key and typing the
character or by holding down the alt key and typing the numeric ASCII
value.

Syntax

CntrlToNum(str)

Parameters

str: String expression (input)
 This parameter specifies the characters in a string to be
 converted to ASCII. Non-printable ASCII characters have
 decimal values less than 32 and greater than 159. See
 Appendix F, "ASCII Character Set," for a compiete list of
 ASCII characters used by the system.

Example

NewStr = CntrlToNum(0ldStr)

4-33 Statements and Intrinsics

Statements and Intrinsics

$CodeSize

Type

Statement Compiler Directive

Purpose

Sets the number of bytes of UPL code that will reside in virtual memory.

Syntax

$Codesize iconst

Keyword modifters

iconst: Number of bytes you want in fast 10. This directive may
 occur anywhere in the UPL program. lf more than one
 $CodeSize directive is specified, the last one is used. The
 default is the smaller of: a) the actual size of the UCD file or
 b) the amount of virtual memory set aside for UPL. The
 latter value is specified using the Configurator.

Use this directive only if you are using the Process statement to invoke
another UPL program which is larger than the program you are writing. In
this case, set $CodeSize to the larger of the two.

Example

$CODESIZE 10000

4-34 UPL Revision 6.0

Statements and Intrinsics

Const

Type

Statement Declaration

Purpose

Declares the name, data type, and value of a named constant. The data
types are the same for variables except that a file may not be a constant.
Literal constants rnust also be scalars; there are no array constants.

A named constant may appear anywhere in a program that a literal
constant does.

Syntax

Const datatype constname = const, constname = const....

Keyword modifiers

datatype: Data type of the constant. This may be Integer, Integer4,
 Real, Coord, Boolean, or String.
constname: Name of the constant. Only the first 16 characters are used.

const: Value of the constant. This is not optional. The value must be

 a literal constant with the data type given by datatype.

 Regardless of whether the constant is declared in the Group
 section, a procedure, or a function, it will always be set to
 this value once at the beginning of the program.

All declaration statements must occur after the Proc, Fune, and Group
statements. They must appear before any other type of statements inside a
procedure or function and are the only statements allowed inside the
Group section.

For more information, see Chapter 2, Program Structure, and Appendix E,
"Internal Data Format."

4-35 Statements and Intrinsics

Statements and Intrinsics

Examples

Const Integer MaxSize = 10, MaxInt = 32767
Const Integer Biggest = 499

Const Real Tolerance = 0.0001, Diam = 2.50

Const Coord Origin = []
Const Coord UnitVec = [0.57735, 0.57735, 0.57735]

Const Boolean Yes = True, No = False

Const String Title = "Wigit Design #345x"
Const String Dots = “ “

4-36 UPL Revision 6.0

Statements and Intrinsics

Coord

Type

Statement Declaration

Purpose

Declares the name, data type, aggregate type and initial value of a
coordinate variable. An initial value is optional. Array variables must be
declared with their maximum subscripts.

Variables of coordinate data type are made up of three real components in
the range of -1.0E+38 to -1.0E-37, 1.0E-37 to 1.0E+38, and 0.0.

Syntax

Coord cvar= [constx, consty constz] | carray(iconst,...)....

Keyword modifters

cvar: Declares the name of the coordinate variable. Only the first
 16 characters are used.

constx: Optional literal or named real constant. lt specifies the initial
 value for the ".X" attribute of a coordinate scalar variable.

consty: Optional literal or named real constant. lt specifies the initial
 value for the ".Y" attribute of a coordinate scalar variable.

constz: Optional literal or nameil real constant. lt specifies the initial
 value for the ".Z" attribute of a coordinate scalar variable.

carray: Declares the name of the coordinate array variable. Only the
 first 16 charaeters are used.

iconst: Array subscripts. These declare the variable to have
 aggregate type array. Up to five subscripts may be declared.
 The subscripts must be enclosed in parentheses. Array
 variables may not be given an initial value.

 lf the variable is declared in the Group section, it will be set
 to these values once at the beginning of the program. If the
 variable is declared in a procedure or function, it will be set
 to these values each time the procedure or function is called.

4-37 Statements and Intrinsics

Statements and Intrinsics

All declaration statements must occur after the Proc, Func, and Group
statements. They must appear before any other type of statements inside a
procedure or function and are the only statements allowed inside the
Group section.

For more information, see Chapter 2, Program Structure, and Appendix E,
"Internal Data Format."

Examples

Coord EndPoint1, Endpoint2, Vertices(100)

Coord ThisPoint = [0.0,0.0,0.0]

Coord ThatPoint = [3.25,7.789,415.23]

4-38 UPL Revision 6.0

Statements and Intrinsics

Coord

Type

Intrinsic Function Data Conversion

Purpose

Converts three real expressions to a single coordinate value and returns
the value. You cannot use the [X, Y, Z] notation unless X, Y, and Z are
constants. This function allows you to convert the X, Y, and Z expressions
to one coordinate expression.

Syntax

Coord(x, y, z)

Parameters

x: Real expression (input)
 This parameter specifies the X component of the returned
 coordinate value.

y: Real expression (input)
 This parameter specifies the Y component of the returned
 coordinate value.

z: Real expression (input)
 This parameter specifies the Z component of the returned
 coordinate value.

Examples

C = Coord(R, 3.5, ZVal/Rad+10.0)

C = C2 + Coord(X1, Y2*Fac, Sin(ZRad)/Sqrt(X1))

SEND "INS POINT:", \
 DigStr(Coord(XI,Y2 + COS(THETA),0.0))

4-39 Statements and Intrinsics

Statements and Intrinsics

Cos

Type

Intrinsic Function Trigonometric

Purpose

Returns the cosine of a real expression. This function returns a real value
in radians.

Syntax

Cos(rexpr)

Parameters

rexpr: Real expression (input)
 This parameter specifies the real expression whose cosine is
 returned.

4-40 UPL Revision 6.0

Statements and Intrinsics

Date

Type

Intrinsic Function Systern Interface

Purpose

Returns the current system date in the format: MM/DD/YY. This function returns
a string value (eight characters long).

Syntax

Date()

Parameters

The Date function has no parameters.

Example

Print "Today's date is", Date()

4-41 Statements and Intrinsics

Statements and Intrinsics

DefineAW

Type

Intrinsic Procedure Input/Output(Window)

Purpose

Defines or returns the characteristics of an alphanumeric window. This
procedure allows greater control of window parameters than the Window
statement. See Chapter 3, Functional Listing of Statements and Intrinsics
under Window Input/Output, for more information.

Syntax

DefineAW(iwin, iboxl(1), bkg, page, sflag, priority)

Parameters

iwin: Integer expression (input)
 This parameter allows you to specify the alpha window, 1
 through 20, to get infortnation about or to set parameters for.
 lf iwin is greater than zero, the parameters given are used to
 specify the characteristics of the specified window. lf iwin is
 less than zero, the eurrent characteristics of the window are
 returned in the parameters. See the list below for window
 numbers and their definitions.

 1 UPL window and command/prompt window

 2-10 UPL windows 2-10.

 11 Message window.

 12 Warning message window.

 13 Error message window.

 14 X,Y coordinates of cursor location window.

 15 Status window.

 16 Help window.

 17 General window to list data as fast as possible.

4-42 UPL Revision 6.0

Statements and Intrinsics

 18 window for the Personal Designer DOS command
 and the UPL DOS procedure; do not use.

ibox: Integer array of 4 elements (input/output). This parameter
 specifies and returns the location and size of the window in
 screen pixel coordinates. See PixToRowCol and
 RowColToPix for more information.
 Array values are:.
 ibox(1) left pixel value.
 ibox(2) lower pixel value.
 ibox(3) right pixel value.
 ibox(4) upper pixel value.

ibkg: Integer variable (input/output). This number specifies and
 retums the background color of the window. See the
 SELECT COLOR command in the Personal Designer and
 microDRAFT Revision 6. 0 User Reference Guide for a
 definition of color numbers.

page: Integer variable (input/output)
 This specifies and returns the graphics page that the window
 is on. For alphanumeric windows, the page parameter
 usually equals one. This parameter is dependent on the
 graphics device driver.

sflag: Integer variable (input/output)
 This specifies and returns the autowrap flag. Values are:
 0 disabies a line autowrap.
 1 enabies a line autowrap.

priority: Integer variable (input/output)
 This parameter specifies and returns the priority of the
 window; the greater the number, the higher the priority. The
 window with the higher priority overwrites the window with
 the lower priority. See Chapter 3, Functional Listing of
 Statements and Intrinsics, for a definition of priorities.

4-43 Statements and Intrinsics

Statements and Intrinsics

Example

This program demonstrates the use of DefineAW

proc main

integer awindow, corners(4), backgrnd
integer page, wrap, priority

awindow = 5
backgrnd = 2
page = 1
wrap = 1
priority = 20
corners(1) = 5
corners(2) = 20
corners(3) = 60
corners(4) = 25

RowColToPix(corners(1), page)
DefineAW(awindow, corners(1),backgrnd, page, \
 wrap, priority)
AWinClear(awindow)
end proc

4-44 UPL Revision 6.0

Statements and Intrinsics

DefineModifier

Type

Intrinsic Procedure User Interface

Purpose

Allows your UPL program to accept input in the modifier format used by
Personal Designer. The DefineModifier procedure is used with the
AskModifiers and GetModifier procedures. DefineModifier defines all
modifiers to be used and their initial values. Each set of modifiers can contain a
maximum of 60 words. AskModifiers invokes the Personal Designer modifier
processor to scan the modifiers input by the user. GetModifier returns the
modifier values input by the user.

Syntax

DefineModifier(iword, word, type, selected, value, immediate)

Parameters

iword: Integer expression (input)
 This parameter specifies an integer expression to be assigned
 to the modifier word. Set iword to zero if you want to clear
 existing modifier words and insert new ones.

word: String expression of 12 characters (input)
 The word parameter specifies the modifier word. The
 parameter has a 12 character maximum which can be
 abbreviated in upper case. lf you abbreviate the word, the
 user only needs to type the upper case letters to select the
 modifier. For example, if you set a modifier called
 TOLerance, the user only types TOL to select the word.
 However, when the user enters a "?" to get a list of the
 modifiers and their values, the system displays the whole
 word.

4-45 Statements and Intrinsics

Statements and Intrinsics

type: String expression of 1 character (input)
 This parameter specifies one letter. This letter defines the
 data type of the modifier; and it also defines whether or not
 the modifier is exclusive of other modifiers with the same
 data type. lf a modifier is exclusive, the user can select only
 one modifier out of many that have the same letter assigned
 to it. There are four types of data: boolean, integer, real, and
 string.

 The following list of letters show which modifiers are
 exclusive and non-exclusive by data type:

A to H Boolean, exclusive.

I Integer non-exclusive.

J to M Integer, exclusive.

N Boolean, non-exclusive.

O to P String, for file names, 64 characters maximum.
 NOTE: type 0 and P ean only be used once in a
 set of modifiers.
Q String, for text, 1.000 characters maximum.
 NOTE: type Q can only be used only
 once in a set of modifiers.
R Real, non-exclusive.

S to V Real, exclusive.

W to Z Boolean, exclusive.

selected: Boolean expression (input)
 This parameter specifies whether the modifier is active by
 default. For non-exclusive modifiers, the selected parameter
 is usually set to false. For exclusive modifiers, only one of
 the modifiers with the same letter assignment is set to true.

value: Real expression (input)
 This parameter specifies the default value for real and
 integer data. Integers must be converted to real numbers.
 You cannot set a default value for 0, P and Q modifiers.

4-46 UPL Revision 6.0

Statements and Intrinsics

immediate: Integer expression (input)
 This parameter specifies whether control should be passed
 back to the calling routine immediately after this modifier
 has been entered by the user. A non-zero value returns
 immediately. A zero value passes control to the next line in
 the UPL program. The user is prompted for modifiers after
 the AskModifiers call is made. Control flow continues to the
 next line.

Example

--- ------
-- The following procedure shows how to set up
-- the modifiers for a command written in UPL
-- which uses the same modifiers as the Personal
-- Designer command MEASURE MPROP.

proc DefineModifierValues

DefineModifier(0,'' ,' ',False,0.0,0)
DefineModifier(1,'SIZE' ,'R',False,0.0,0)
DefineModifier(2,'DENSity' ,'S',True,1.0,0)
DefineModifier(3,'MASS' ,'S' , False,1.0,0)
DefineModifier(4,'ADDPoint' ,'I',False,1.0,0)
DefineModifier(5,'ADDCplane' ,'I',False,7.0,0)
DefineModifier(6,'FILE' , 'P',False,0.0,0)
DefineModifier(7,'PRECision' ,'I',False,5.0,0)
DefineModifier(8,'TOTalonly' ,'A',False,0.0,0)
DefineModifier(9,'ALL' , 'A',True,0.0,0)
DefineModifier(10,'CHTolerance' ,'R',False,0.1,0)
DefineModifier(11,'TOLerance' ,'R',False,0.005,0)
DefineModifier(12,'BOundary' , 'B',False,0.0,0)
DefineModifier(13,'NOBOundary' ,'B',True,0.0,0)

end proc
--- -----

4-47 Statements and Intrinsics

Statements and Intrinsics

DegRad

Type

Intrinsic Function Data Conversion

Purpose

Converts a real expression frorn degrees to radians. It returns the real value.

Syntax

DegRad(rexpr)

Parameters

rexpr: Real expression (input)
 This parameter specifies the real expression to convert.

4-48 UPL Revision 6.0

Statements and Intrinsics

Delete

Type

Statement Input/Output (File)

Purpose

Deletes a file. Do not delete an open file.

Syntax

Delete filename

Keyword modifiers

filename: String expression which gives the name of the file to be
 deleted.

Example

DELETE "TEST.DRW"

4-49 Statements and Intrinsics

Statements and Intrinsics

DigStr

Type

Intrinsic Function Data Conversion

Purpose

Returns a string which represents the X, Y, Z coordinate data of any point in
space. You can use DigStr to simplify the specification of coordinate data in the
Send statement.
Note that DigStr adds a comma to the end of the text string being created. This
is used by the GetData processor in Personal Designer to end coordinate input
for that point. See the Personal Designer and microDRAFT Revision 6.0
UserReference Guide, Chapter 2 for more ififormation on Getdata.

Syntax

DigStr(pnt)

Parameters

pnt: Coordinate expression (input)
 This parameter specifies the coordinate value to be
 converted to a string.

Example

C1 = [-3.0,4.01 Send "ins
lin:",DigStr([1.0,2.0,3.01),DigStr(C1)
This would send the following to the command proces sor:

ins lin: X1.0 Y2.0 Z3.0, X-3.0 Y4.0 ZO.0,

4-51 Statements and Intrinsics

Statements and Intrinsics

DirFn

Type

Intrinsic Procedure Operating System

Purpose

Retrieves directory information about a DOS or UNIX file. All types of directory
entries may be queried including directories, hidden files, and normal files.

Syntax

DirFn(filename, iatt, timestr, datestr rsize, flag)

Parameters

filename: String variable of 64 characters (input/output)
 Thefilename parameter specifies the file name that will be
 searched for in the input mode; and the file name that will be
 returned in the output mode. On input, include path names
 and drive specifiers. On output, no path names or drive
 specifiers will be returned with the name of the file. See the
 flag parameter for more information.
iatt: Integer variable (input/output)
 On input, iatt specifies the file attributes you want to find.
 On output, iatt returns the file attributes that were aetually
 found. Attribute values are:

0 normal file.
1 read only.
2 hidden file.
4 system file.
8 volume label.
16 subdirectory.
32 archived file.

4-52 UPL Revision 6.0

Statements and Intrinsics

All other values of iatt represent a combination of the numbers above. For
example, iatt = 7 is a read only, hidden system file. See your operating system
manual for more information on files.

timestr: String variable of 8 characters (input/output)
 This parameter returns the time the file was last modified in
 the following format: HH:MM:SS.
datestr String variable of 8 characters (input/output)
 This returns the date the file was last written in the following
 format: MM/DD/YY.
rsize: Real variable (input/output)
 This parameter returns the number of bytes in the file. This
 returns a real value, not an integer.
flag: Integer variable (input/output)
 On input, setflag = 1 to have the prograrn search for the first
 matching file name. Setflag = 0 to search for the next
 matching file name if a wildcard character was used.
 On output, ifflag = 0, a file was found. If flag = 1, no
 additional files could be found.

Examples

--
-- This example prints out a list of all EXE
-- files in the current directory.

proc main

 integer Flag, IAtt
 string FN:64
 string TimeStr:8, DateStr:8
 real RSize

 Flag = 1
 FN = '*.EXE'
 loop
 Iatt = 0
 DirFN(FN,IAtt,TimeStr,DateStr,RSize,Flag)
 exit when Flag <> 0
 print FN:-14,DateStr:9,TimeStr:9,RSize:8:0
 end loop
end proc
--

4-53 Statements and Intrinsics

Statements and Intrinsics

--
-- This example prints out a list of all
-- the files in the root directory.

proc main

 integer Flag, IAtt
 string FN:64 string TimeStr:8, DateStr:8
 real RSize

 Flag = 1
 FN = '*.*'
 loop
 Iatt = 16
 DirFN(FN,IAtt,TimeStr,DateStr,RSize,Flag)
 exit when Flag <> 0
 print FN:-14,DateStr:9,TimeStr:9,RSize:8:0
 end loop

end proc

4-54 UPL Revision 6.0

Statements and Intrinsics

DiskFree

Type

Intrinsic Function Operating System

Purpose

The IDiskFree intrinsic is intended to supercede DiskFree. To obtain the
number of free bytes as a long integer, use IDiskFree.

Returns the number of free bytes on the specified disk drive. DiskFree returns a
real value, not an integer. Do not convert this result to an integer because the
returned value may be greater than 32,767 bytes which will produce an
incorrect result.

Syntax

DiskFree(idrive)

Parameters

idrive: Integer expression (input)
 This parameter specifies the drive you want to query. In the
 table below, drive one starts with A and each successive
 drive is matched with the next letter in the alphabet. lf you
 do not have a drive B, drive C will still be matched with
 number three. Values are:

0 current drive
1 A
2 B
3 C
etc. etc.

Examples

DFree = Disk-Free(3)

4-55 Statements and Intrinsics

Statements and Intrinsics

Display

Type

Statement Input/Output (Window)

Purpose

Writes a block of text to a window on the user's screen.

Syntax

Display

 Text

$

Keyword modifiers

text: Starts on the line following the Display statement and ends
when a dollar sign is encountered. To use dollar signs in the
text, key in two dollar signs to get one. Be sure to use only the
dollar sign character to end the text.
The text is displayed in the Display window which is the
command window by default. To change the display window,
use the DispWin system variable to specify the window
number. For more information, see Window and the DispWin
variable in Appendix B, "System Variables."

4-56 UPL Revision 6.0

Statements and Intrinsics

Example

DISPLAY

Welcome to the Tutorial

Main Menu

A) Getting started
B) Simple demonstration
C) How to insert new Geometry

Choose option - $

ACCEPT STR IN(-ABC-) SIZE(1)

4-57 Statements and Intrinsics

Statements and Intrinsics

DOS

Type

Intrinsic Procedure Operating System

Purpose

Provides access to the native operating system on DOS systems. Currently
supported operating systems are DOS and UNIX. The program can execute
operating system level commands or escape to DOS temporarily. The DOS
command specified in the cmdstring parameter is executed by the operating
system if there is enough memory available.

Syntax

DOS(cmdstring)

Parameters

cmdstring: String expression (input)
 This parameter specifies the DOS command to be executed.
 If you set the parameter to the null string, the system will
 switch to the DOS window which is window 18 when the
 program is run. Once in the DOS, the user can type in all
 commands needed. To return control to the program, the user
 must type the DOS command "Exit."

Examples

DOS('COPY'+FileName1+' '+FileName2) --Copies file.

DOS('')--Switches to DOS level.

--Creates the file DIRBAT which contains a
--sorted list of all batch files.

DOS(´DIR *.BAT | SORT > DIRBAT´)

4-58 UPL Revision 6.0

Statements and Intrinsics

Draw

Type

Intrinsic Procedure Graphics

Purpose

Draws on the graphics screen without putting entities into the database.

Syntax

Draw(what, color, font, npnts, pnts(1))

Parameters

what: Integer expression (input)
 This parameter specifies what to draw. Values are:
 1 Dot at each coordinate in the pnts parameter.
 2 Line connecting each coordinate in pnts.
 3 Boxes with lower left corner given by pnts(1) and
 upper right corner given by pnts(2).
 Add 100 to what to have a small x drawn at the first point.
 Add 200 to what to have a small x drawn at the last point.
 Add 300 to what to have a small x drawn at all points.
color: Integer expression (input)
 Specifies the color number. See SELECT COLOR in the
 Personal Designer documentation for a list of colors.
 >0 Draws the color on.
 = 0 Turns the color off.
 <0 Uses a complementary color.
font: Integer expression (input)
 This parameter specifies the line font to draw with. A
 negative one uses the currently selected font.
npnts: Integer expression (input)
 This parameter specifies the number of points in the pnts
 array. If what = 3, then each pair of points specifies the
 opposite corners of a box.
pnts: Coordinate array variable (input)
 This specifies the array of view space coordinates.

4-59 Statements and Intrinsics

Statements and Intrinsics

DrawText

Type

Intrinsic Procedure Graphics

Purpose

Draws graphic text on the graphics screen. This text is not added to the drawing
database.

Syntax

DrawText(str org, angle, hgt, wdt, color)

Parameters

str String expression (input)
 This parameter specifies the characters to draw. There is a
 maximum of 500 characters.
0rg: Coordinate expression (input)
 This parameter specifies the view space origin to draw the
 text at. The text is always drawn leftjustified.
angle: Real expression (input)
 This parameter specifies the angle in degrees (0 to 360) to
 draw the text in.
hgt: Real expression (input)
 This parameter specifies the height in inches to draw the
 character on the screen. This is independent of the drawing
 scale.
wdt: Real expression (input)
 This parameter specifies the width in inches to draw the
 character on the screen. This is independent of the drawing
 scale.
color: Integer expression (input)
 This parameter specifies the color number to draw the text
 with. Zero erases text. See the SELECT COLOR command
 in the Personal Designer and microDRAFTRevision 6.0
 User Reference Guide for a list of color numbers.

4-60 UPL Revision 6.0

Statements and Intrinsics

Dsubrec

Type

Intrinsic Procedure Database Access

Purpose

Deletes a specific subrecord from an entity.

Syntax

DSubrec(mib,occur,error,srtype)

Parameters

mib: Integer4 expression (input) (integer4 expression in Rev, 5.0
 or later);
 This parameter specifies the MIB number of the entity from
 which the subrecord will be deleted.
occur: Integer expression (input)
 Specifies which occurrence of the srtype subrecord will be
 deleted. lt is used if the Part Data File (PDF) portion of the
 entity record contains more than one srtype subrecord. lf the
 PDF portion of the entity record does not have more than
 one srtype subrecord, set the occurrence to one.
error: Integer variable (output)
 This parameter retums the error condition:
 0 no errors.
 1 an 10 error was found.
 3 no srtype subrecord was found.
 4 an invalid MIB number was given.
srlype: String expression of 2 characters (input)
 Specifies the type of subrecord to delete. If the parameter is
 an empty string, the procedure will delete a subrecord of any
 type found in the position specified by the parameter occur.

Example

DSubrec(mib(i),occur,ierr,dmtype)

4-61 Statements and Intrinsics

Statements and Intrinsics

Echo

Type

Statement Input/Output (Window)

Purpose

Controls the echoing of text and digitize marks from the Accept, Display, Print,
and Send statements on your screen. Personal Designer commands are
echoed in the command window; digitize marks are echoed in the graphics
window.

Syntax

Echo On | Off All

Keyword modifiers

The Echo statement is initially set to On, which echoes commands and digitize
marks.
If you select Off, digitize marks will be echoed, but not commands. All is an
optional keyword; Off All inhibits all echoing. Off All is especially useful when
executing commands with the Send statement.

Examples

ECHO ON
ECHO OFF
ECHO OFF ALL

4-62 UPL Revision 6.0

Statements and Intrinsics

EntlntOf

Type

Intrinsic Procedure Geometric

Purpose

Finds the intersecting point of two entities.

Syntax

EntlntOf(mibl, mib2, viewno, sends(1), digpnt, intpnt, error)

Parameters

mibl: Integer4 expression (input)
 This specifies the MIB number of the first entity.
mib2: Integer4 expression (input)
 Specifies the MIB number of the second entity.
viewno: Integer expression (input)
 This parameter specifies the view to locate the intersection
 in. If the two entities appear to intersect, this is a view space
 intersection. However, if the two entities really do intersect
 in 3D space, this is referred to as a model space intersection.
 Values are:
 -1 model space intersection (in any view).
 0 view space intersection in the current view.
 >0 view space intersection in a given view.
 lf the view number cannot be found, the current view is
 used.
sends: Integer array of 2 elements (input/output)
 This parameter is necessary if one of the possible
 intersecting entities is a string entity. The parameter is
 necessary because the string might represent a shape like a
 spiral which may have many intersections with another
 entity. lf no entities are strings, use a dummy array as a place
 holder.

4-63 Statements and Intrinsics

Statements and Intrinsics

The array elements specify the string vertex numbers to find the
intersection for. You can use the iend parameter in the GetEnt
procedure to determine which vertex is closest to the digitized
point. The array returns the following values:

sends(1) the vertex number for the mib1 entity.

sends(2) the vertex number for the mib2 entity if the entity is

also a string.

digpnt: Coordinate expression (input)
 This parameter specifies the intersecting reference point. If
 two entities intersect in more than one place, the closest
 intersecting point to digpnt will be the point returned in the

 intpnt parameter.

intpnt: Coordinate variable (input/output)
 This parameter specifies the intersection point.

error: Integer variable (input/output)
 This parameter returns the error condition returned to the
 user. Values returned are:

 0 at least one intersecting point was found.
 10 parallel lines were found. Depending on the view,
 this could either indicate an infinite number of
 intersecting points, (the lines occupy the same
 space), or no intersection at all.
 11 no intersection was found.
 12 intersecting point cannot be determined for the
 two entity types given.

Example

Ent_Int_Of(Mib1, Mib2, 7, SEnds(1), C1, Pnt, IErr)

4-64 UPL Revision 6.0

Statements and Intrinsics

EntMask

Type

Intrinsic Procedure User Interface

Purpose

Specifies the types of entities that can be accepted as input by GetDig, GetEnd,
or GetEnt.
The first call to EntMask should be made with a value of zero to reset entity
masking. The next call to EntMask with a value other than zero allows only that
entity type to be accepted. Successive non-zero calls add new entities to the list
of acceptable entity types.

Syntax

EntMask(ienttype)

Parameters

ienttype: Integer expression (input)
 This parameter specifies the entity types that will be
 accepted by the GetDig, GetEnd, and GetEnt procedures.
 Values are:

 0 resets parameter so that all entity types can be
 picked.
 1 adds Line entity type.
 2 adds String entity type.
 3 adds Arc entity type.
 4 adds Text entity type.
 5 adds Point entity type.
 6 adds Linear Dimension entity type.
 7 adds Label, Point Dimension entity type.
 8 adds Radius Dimension entity type.

4-65 Statements and Intrinsics

Statements and Intrinsics

9 adds Angular Dimension entity type.
10 adds Cross-Hatching entity type.
11 adds Figures entity type.
12 adds Diameter Dimension entity type.
13 adds MView.
14 adds Ellipse entity type.
16 adds Curve entity type (Cpole).
17 adds Surface entity type (Spole).
18 adds Plane entity type.
30 adds NURB curve entity type.
31 adds NURB surface entity type.
35 adds 3-D tool path entity type.
36 adds 2 1/2 D tool path entity type.

Example

-- This example will only allow Line and
-- String entities to be picked by GetEnt.

proc main
 integer endd
 integer4 MibList(100), NEnt

 EntMask(0)
 EntMask(1)
 EntMask(2)

 GetEnt(100, NEnt, MibList(1), endd)

end proc

4-66 UPL Revision 6.0

Statements and Intrinsics

EntPntOn

Type

Intrinsic Procedure Geometric

Purpose

Determines the point on an entity which is closest to the point given by the
digpnt parameter.

Syntax

EntPntOn(mib, send, digpnt, transform(1), onpnt, error)

Parameters

mib: Integer4 expression (input)
 This parameter specifies the MIB number of the entity to
 find the point on.
send: Integer expression (input)
 If mib is a string entity, send specifies the segment to search
 for the point. This parameter is necessary if the entity is a
 string entity. The parameter is necessary because the string
 may represent a shape like a spiral which may have many
 points near the given point. Negative values cause
 EntPntOn to find the actual point closest to digpnt on the
 string. Positive values return a point which is the projection
 of digpnt onto the send segment, even if that segment must
 be extended in space to allow the projection. If no entities
 are strings, use a zero as a place holder.
digpnt: Coordinate expression (input)
 The digpnt parameter specifies the proximity reference
 point. The point on the entity which is closest to this point
 becomes the onpnt parameter. This point is given in the
 coordinate system defined by the transform parameter.
transform: Real array of 15 elements (input/output)
 This transfor7n specifies the view orientation used when
 determining the closest point on the entity. When working in
 model space, use the NullTransform procedure.

4-67 Statements and Intrinsies

Statements and Intrinsics

onpnt: Coordinate variable (input/output)
 This returns the point which is on the given entity that is
 closest to the digpnt parameter. lt is given in model space
 coordinates.
error: Integer variable (input/output)
 This parameter specifies the following error condition:

0 no errors were found.
1 an 10 error was found.
2 there are not enough bytes to read (nbytes is too big).
3 the subrecord was not found.
4 an invalid MIB number was given.

4-68 UPL Revision 6.0

Statements and Intrinsics

EnvVar

Type

Intrinsic Procedure Operating System

Purpose

Returns the value of a operating system (OS) environment variable. Currently
supported operating systems are DOS and UNIX. Environment variabies can be
set with the DOS or UNIX set command; refer to your operating system manual
for more information.

Syntax

EnvVar(envvarname, envval)

Parameters

envvarname: String expression (input)
 This parameter specifies the OS environment variable name
 to look for and return the value of
envval: String variable (input/output)
 This parameter retums the value of the environment variable.
 lf envvarname is not found, envval is returned as an empty
 string, EnvVal.Length = 0.

Example

Env Var("PATH", PathStr)
If PathStr = " " Then
 print "no path name found"
Else
 print "path = ",PathStr
End If

4-69 Statements and Intrinsics

Statements and Intrinsics

Erase

Type

Statement Database Access

Purpose

Removes an existing entity from the drawing database.

Syntax

Erase entloc Rpnt(bexpr)

Keyword modifiers

entloc: Specifies which entity to delete from the database. You must
 use an entloc keyword in this statement. The entloc keyword
 can be used in two ways; the one you use depends on
 whether you know the MIB number of the entity to be
 deleted.

 If you know the entity's MIB number, use this form for
 entloc:

 Entld(i4expr):

 Replace i4expr with an integer4 expression for the MIB
 number. You may find the MIB number by using the Verify
 statement or by using intrinsic functions. Some intrinsics,
 such as GetEnt, allow the user to digitize entities in the
 graphics window. Their MIB numbers are then available to
 the program. Other functions, such as FindProp and
 TagMib, will return an MIB number when given
 non-graphical information such as the entity's properties or
 tags. lt is recommended that the MIB number be obtained
 before using the Erase statement.

 lf you do not know the entity's MIB number, you may use
 one of the following keywords for entloc:

 First:
 Deletes the first entity in the database.

4-70 UPL Revision 6.0

Statements and Intrinsics

 Next:
 Deletes the next entity in the database. This keyword allows

the program to step through the database sequentially and
delete each entity. Each time an Erase Next statement is
executed, the next entity in the database is deleted. An Erase
Next statement may also be used after an Erase

 Entld(iexpr) statement. The database search will then start

at the iexpr entity instead of the first entity.

Last:
Deletes the last entity in the database. This keyword allows the
program to erase the last entity inserted into the database without
searching the database from the beginning.

When the end of the database is reached, DBStatus is set
to two. See Appendix B, "System Variables," for more
information.

Rpnt(bexpr):
Optional clause to specify repainting of entity.
Replace bexpr with the Boolean expression after the
keyword Rpnt. lf bexpr evaluates to true, then the entity is
erased from the graphics window after it is deleted from the
database. Otherwise, it is not.

Example

ERASE ENT_ID(E_ENT)

ERASE LAST RPNT(TRUE)

4-71 Statements and Intrinsics

Statements and Intrinsics

Exist

Type

Intrinsic Function System Interface

Purpose

Returns true if a specified file exists; otherwise returns false. This function
returns a Boolean value.

Syntax

Exist(sexpr)

Parameters

sexpr: String expression (input)
 This parameter specifies the file name. The file name may
 include path names and a drive specifier.

4-72 UPL Revision 6.0

Statements and Intrinsics

Exit

Type

Statement Flow Control

Purpose

The Exit statement unconditionally or conditionally exits the current Loop or If
block structure.

Syntax

Exit Loop | lf iexpr | All When bexpr

Keyword modifiers

Loop | lf: Optional clause that specifies the type of structure you want
 the program to exit.
iexpr | All: An optional clause that specifies the number of levels in the
 structure you want the program to exit. lf you choose All, the
 program exits all loop and/or if structures. lf you replace
 iexpr with an integer expression, the program exits that
 number of structures.
When bexpr: Optional clause that specifies the Boolean expression to
 satisfy in order to exit. Otherwise the program continues
 execution on the next line of code.

Examples

Exit --(Exits 1 if or loop structure)
Exit 2 --(Exits 2 nested if or loop structures)
Exit All --(Exits all if or loop structures)
Exit If --(Exits 1 if structure)
Exit If All--(Exits all if structures)
--(Exits all if structures if i = 1)
Exit If All When i = 1

4-73 Statements and Intrinsics

Statements and Intrinsics

--(Exits 1 if structure if J = 1)

Exit If When J = 1

Exit Loop --(Exits 1 loop structure)

Exit Loop 2 --(Exits 2 nested loop structures)

Exit Loop All --(Exits all nested loop structures)

--(Exits all nested loop structures if i = 1) Exit Loop
All When J = 1

--(Exits 1 loop structure if J = 1)
Exit Loop When J = 1

--(Exits 1 loop or if structure if i = 1)
Exit When J = 1

4-74 UPL Revision 6.0

Statements and Intrinsics

Extract

Type

Intrinsic Function String Handling

Purpose

Extraets a substring from a given string. This function returns a string value.

Syntax

Extract(sexpr, iexpr,numchar)

Parameters

sexpr: String expression (input)
 This parameter specifies the string.
iexpr: Integer expression (input)
 This parameter specifies the starting position in the string
 sexpr. lf iexpr is greater than the length of sexpr, a null string
 is returned.
numchar: Integer expression (input)
 This parameter speeifies the number of characters to extract
 from the string sexpr. If iexpr + numchar is greater than the
 length of sexpr, the extracted string will end with the last
 character in sexpr.

4-75 Statements and Intrinsics

Statements and Intrinsics

File

Type

Statement Declaration

Purpose

Declares the name and aggregate type of a file variable. File variables
represent the file to the program and have various attributes which relate to the
actual file. File variables use the same name for their data type and aggregate
type: file.
File variables may not be assigned a constant value and may not be arrays.

Syntax

File filevar, filevar...

Keyword modifiers

filevar: Name of the file variable. Only the first 16 characters are used.

All declaration statements must occur after the Proc, Func, and Group
statements. They must appear before any other type of statements inside a
procedure or function and are the only statements allowed inside the Group
section.
For more information, see Chapter 2, Program Structure, and Appendix E,
"Internal Data Format."

Examples

File InputFile, OutFile

File DataFile

4-76 UPL Revision 6.0

Statements and Intrinsics

FillPoly

Type

Intrinsic Procedure Graphics

Purpose

Creates a filled polygon with a given color. The polygon is only filled on the
screen; it does not become part of the part database.

Syntax

FillPoly(color pattern, ixy(1), nverts)

Parameters

color: Integer expression (input)
 This parameter specifies which color to fill the polygon with.
 Specify colors with a Personal Designer color number. For a
 definition of color numbers, see the SELECT COLOR
 Command in the Personal Designer and microDRAFT
 Revision 6.0 User Reference Guide. A positive number for
 color obscures all geometry inside the polygon. A negative
 number leaves the geometry visible. A second call to
 FillPoly with a negative color fills the polygon with the
 original background color. See the example.
pattern: Integer expression (input)
 This parameter specifies the pattern to fill the polygon with.
 If the pattern number is zero or one, the polygon is filied
 with a solid pattern, lf the pattern number is greater than
 one, the polygon is filled by a pattern specified by the
 graphics device driver.
ixy: Integer array of nvert elements (input/output)
 This parameter specifies the X, Y coordinates of the
 polygon's vertices. The parameter must be specified in pairs
 of X and Y pixel coordinates. To convert from two-D and
 3D coordinates, use the Map2PxN procedure.

nverts: Integer expression (input)
 This specifies the number of X,Y coordinate pairs in the ixy
 parameter. A maximum of 6.000 pairs may be specified.

4-77 Statements and Intrinsics

Statements and Intrinsics

Example

Proc Main
Integer IXY(2,4)
Coord Pnts(4)

Pnts(1) = [2,21
Pnts(2) = [2,-21
Pnts(3) = [-2,-21
Pnts(4) = [-2,21

Map2PxN(Pnts(1), IXY(1), 4)

Fillpoly(9,1, IXY(1), 4)

Fillpoly(-9,1, IXY(1), 4)

End Proc

4-78 UPL Revision 6.0

Statements and Intrinsics

FindFn

Type

Intrinsic Procedure Operating System

Purpose

Finds the directory of a specific file. The current directory is checked first. If the
file is not found there, the file paths given by the paths parameter are searched.
The EnvVar procedure ean be used to get the value of the paths parameter
directly from the operating system's path environment variable.

Syntax

FindFn(filename, paths, ifound)

Parameters

filename: String of 64 characters (input/output)
 Thefilename parameter specifies the file name that will be
 searched for on input; and the file name that will be returned
 on output. On input, do not include path names and drive
 specifiers. On output, path names will be returned with the
 name of the file.
paths: String expression (input)
 This specifies the drive and path names to search for the
 filename parameter. The paths parameter must be specified
 in the format <path>;<path>;. This is the same fortnat used
 in the path environment variable.
 An example of a typical path string is:
 C:\DOS;C:\BIN;C:\PD5
ifound: Integer variable (input/output)
 This parameter retums whether or not the file was found.
 Values returned are:

 0 the file was not found.
 1 the file was found.

4-79 Statements and Intrinsics

Statements and Intrinsics

Example

Proc Main

 Integer Ifound
 String PathSTR:80,MyDrawing:64
 :
 EnvVar("PATH",PathStr)
 MyDrawing = "GEOM.DRW"
 FindFn(MyDrawing,PathStr,IFound)
 IF Ifound <> 0 Then
 Print "Drawing name and Path is", MyDrawing
 Else
 Print "Drawing not founds"
 End If

End Proc

4-80 UPL Revision 6.0

Statements and Intrinsics

FindMenu

Type

Intrinsic Procedure User Interface

Purpose

Determines the on-screen icon number that is at a screen location. This icon
number can then be used with other intrinsie procedures such as GetMenulnfo
and HilightMenu.
This procedure rnay be used by UPL programmers who will be writing tutorial
programs which have the user selecting an icon menu box. lt may also be used
to simply determine which icon the cursor is over.

Syntax

FindMenu(menunum, idigpnt(1))

Parameters

menunum: Integer variable (input/output)
 This parameter returns the icon menu number that the
 idigpnt parameter is over. The menunum parameter returns a
 negative one if idigpnt is not over any icon menu.
idigpnt: Integer array (input/output)
 This parameter, given in pixel coordinates, speeifies what
 screen location to look for the menu icon. To get the current
 X, Y cursor position in pixel coordinates, use the GetC
 procedure or funetion 11 in the SysVarl procedure. You
 must use these procedures since idigpnt is not in the graphics
 window.

Example

Find-Menu(MenuNum, IPnt(1))

4-81 Statements and Intrinsics

Statements and Intrinsics

FindProp

Type

Intrinsic Procedure Database Access

Purpose

Quickly finds properties of entities.

lf you have a property name and a starting MIB number, this procedure will
return the property type, property value, and the MIB number of the next entity
the property name was found on.

You may use the intrinsie procedure EntMask to restrict the types of entities to
be searched.

Syntax

FindProp(propname, proptype, propval, mib)

Parameters

propname: String of 8 characters (input/output)
 On input, this parameter specifies which property name to
 find. The name can include the wildcard character "?" in any
 or all of the character positions.
 lf a wildcard is specified, this parameter returns, on output,
 the name of the property found. Note that if FindProp is
 called in a loop, the value of propname can change. You may
 need to explicitly reset the value of propname inside the loop
 to find the exact propname you want. See the example
 below.
proptype: String of 7 characters (input/output)
 If a property is found, the property type is retumed in this
 parameter.
propval: String variable of 100 characters (input/output)
 The property value is returned in this parameter.

4-82 UPL Revision 6.0

Statements and Intrinsics

mib: Integer4 variable (input/output)
 On input, this parameter specifies the MIB number to start
 the search at. To search the entire part, the mib parameter
 should initially be set to zero. lf a property is found on an
 entity, the MIB number will be returned in this parameter. lf
 no matching property name is found, a zero will be returned.

To continue searching where the last call to FindProp left off, call
FindProp again. Set mib to -1 and propname to the name of the
desired property. lf negative one is returned, an error has
occurred in reading the part database.
Note that the MIB numbers may not be returned in aseending
order. To force them into order the part must be packed before
calling FindProp.

Example

-- The following is a program fragment that will
-- find all properties on all entities that
-- match the name "PART????"

PName1 = IPART????"
MIB = 0
Loop
 --This assignment is necessary
 --because FindProp changes PName2
 PName2 = PName1
 FindProp(PName2, PType, PVa1, MIB)
 exit when MIB <= 0
 Print MIB:6,PName2,',",PType,',",PVa1
 MIB = -1
End Loop

4-83 Statements and Intrinsics

Statements and Intrinsics

Flushlnput

Type

Intrinsic Procedure User Interface

Purpose

Clears the Personal Designer input buffer. When this procedure is called, all
pending user input is cleared from the buffer and the UPL program can start
obtaining new input.
This can be used in conjunction with the InputStr procedure.

Syntax

Flushlnput

Parameters

This procedure has no parameters.

4-84 UPL Revision 6.0

Statements and Intrinsics

Func

Type

Statement Program Structure

Purpose

Declares the name and returned data type of a user-defined function, as well as
the name, data, and storage types of the parameters. All statements between
the Fune and End Func keywords form the body of the function.

Syntax

Func funcname(parameterlist) Return retdatatype

Keyword modifiers

funcname: Declares the name of the user-defined function. Only the
 first 16 characters are used. Usingfuncname in an expression
 in the program will cause the function to be called.
 Expressions enclosed in parentheses after the function name
 will be passed as parameters. The function will return a
 value that will take the place of the function call in the
 expression. See Chapter 2, Program Structure, for more
 information.
parameterlist: Contains parameter declarations. Parameters are optional,
 and any number of them may be declared, but they must be
 enclosed in parentheses. lf there are no parameters, you must
 still include parentheses. Parameter declarations are
 equivalent to variable declarations inside a function- their
 names are local to the function. However, paratneter names
 may not be the same as any variables declared in the Group
 section. A parameter list takes the form of:

 mode datatype paramname

 mode

 Keyword which declares the parameter mode. Functions
 may only have input parameters. Iherefore, mode must
 always be replaced with "in."

4-85 Statements and Intrinsics

Statements and Intrinsics

 datatype

Keyword that declares the data type of the parameter. It must be
one of the UPL data types: Integer, Integer4, Real, Coord, String,
or Boolean. There is no initial default data type, but, the most
recently used data type becomes the default after the first
parameter is declared.

 paramname

Parameter name. Only the first 16 characters will be used. Arrays
and files may not be passed as parameters to functions.

lf a string parameter is declared, the maximum length must be
given preceded by a colon.

There are shortcuts for declaring parameters. If the data type of
the parameters has not changed, they may simply be separated
by commas. lf the data type changes, do the following:

1. separate the declarations with a ; or start a new line
2. list the new data type
3. list the new parameter names separated by commas.

retdatatype: Keyword that specifies the data type of the return values
 computed by the function. This value must be returned from
 the function using the Return statement. lt rnust be one of
 the UPL data types: Integer, Integer4, Real, Coord, String, or
 Boolean.

For more information, see Chapter 2, Program Structure, and Appendix E,
"Internal Data Format."

Example

Func ProcessData(In Integer IScalar; Real Delta) \
Return Integer

4-86 UPL Revision 6.0

Statements and Intrinsics

GetBit

Type

Intrinsic Procedure Arithmetic

Purpose

Returns the value of a binary bit in the bittable parameter. This value is located
at the offset specified by the ibit parameter.

This procedure is useful when you want to store and manipulate large amounts
of simple True/False or On/Off data. See SetBit for more information.

Syntax

GetBit(bittable(1), ibit, bit)

Parameters

bittable: Integer variable or array (input/output)
 This parameter specifies a table of bits. Each bit can have a
 value of zero or one. Each integer in bittable can store up to
 16 binary bit values.

ibit: Integer expression (input)
 This parameter specifies the offset in the bittable(1)
 parameter you want returned. The first bit is
 ibit = 0.

bit: Integer variable (input/output)
 This parameter returns the value of the bit. It will have a
 value of zero or one.

Example

Table(1) 8192--- equal to "0010 0000 0000 0000"
in binary Get_Bit(Table(1), 13, BitVal)
Print "Bit 13 is",BitVal

4-87 Statements and Intrinsics

Statements and Intrinsics

GetC

Type

Intrinsic Procedure User Interface

Purpose

Returns the next character from user input and the current crosshair location.
GetC uses the macro set currently selected by Personal Designer.

Syntax

GetC(char ixy(1))

Parameters

char: String variable of 1 character (input/output)
 This parameter returns the retrieved charaeter. lf the user
 digitizes a location that is not over a character (: ;) in a
 menu, a one is returned. Otherwise char returns the input
 character.
ixy: Integer array of 2 elements (input/output)
 This parameter returns the crosshair position (in pixel
 coordinates) at the time the character was retrieved. The first
 element of ixv is the X value; the second element is the Y
 value.

4-88 UPL Revision 6.0

Statements and Intrinsics

GetCPL

Type

Intrinsic Procedure Geometric

Purpose

Returns the transformation matrix for a CPL number. Only the transformation
and offset portions of the transformation matrix (the first 12 elements), are set.
The offset portion of the matrix is not set if the CPL number given is predefined
by Personal Designer as a view number. See Appendix E, "Internal Data
Format," under Transformation Matrix, for more information.

Syntax

GetCPL(cplno, transform(1))

Parameters

cplno: Integer expression (input)
 This speeifies the construction plane number to get the
 transformation matrix for. If the CPL is not defined, the
 current view transforrn is returned.
transform: Real array of 15 elements (input/output)
 This returns the transformation matrix for the given CPL
 number. Only the first 12 elements of transfonn are filled by
 this procedure.

4-89 Statements and Intrinsics

Statements and Intrinsics

Getcur

Type

Intrinsic Procedure Input/Output (Window)

Purpose

Returns the cursor column and row position relative to the upper left corner of
the specified window.

Syntax

GetCur(iwin, row, col)

Parameters

iwin: Integer expression (input)
 This parameter specifies the window number to get the
 cursor position for.
row: Integer variable (input/output)
 This parameter returns the row number of the current cursor
 position relative to the window specified by iwin.
col: Integer variable (input/output)
 This parameter returns the column number of the current
 cursor position relative to the window specified by iwin.

4-90 UPL Revision 6.0

Statements and Intrinsics

GetDig

Type

Intrinsic Procedure User Interface

Purpose

Allows your program to get coordinate data using the Getdata processor. This is
the same format used by Personal Designer commands. See Appendix H,
"Writing Personal Designer Commands", for more information.

Syntax

GetDig(max, gleep, ndigs, xyz(1))

Parameters

max: Integer expression (input)
 This parameter specifies the number of coordinates to
 retrieve. A maximum of 100 is allowed. When the program
 is run, if a colon, semi-colon, carriage return, or control C is
 input from a menu or the keyboard, GetDig will stop
 accepting digitizes and the systern variable LastChar will be
 given that character's ASCII value. Otherwise, LastChar
 will be set to one after max digitizes.
gleep: Integer expression (input)
 This parameter specifies how to mark each digitize:

 0 No mark.
 1 Small x at coordinates.
 2 Lines between coordinates.
 3 Lines between coordinates and x at coordinates.

ndigs: Integer variable (input/output)
 This parameter returns the number of digitized coordinates.
xyz: Coordinate array variable of max elements (input/output)
 This parameter returns the model space coordinates.

4-91 Statements and Intrinsics

Statements and Intrinsics

GetEnd

Type

Intrinsie Procedure User Interface

Purpose

Allows your program to get coordinate data at entity endpoints using the
Getdata processor. This is the same format used by Personal Designer
commands. See Appendix H, "Writinc, Personal Desi ner Commands," 9 for
more information.

Syntax

GetEnd(max, gleep, nend, xyz(1))

Parameters

max: Integer expression (input)
 This parameter specifies the number of coordinates to
 retrieve. A maximum of 100 is allowed.
 When the program is run, if a colon, semi-colon, earriage
 return, or control C is input from a menu or the keyboard,
 GetEnd will stop accepting digitizes and the system variable
 LastChar will be given that character's ASCII value.
 Otherwise, LastChar will be set to one after max digitizes.

gleep: Integer expression (input)
 This parameter specifies how to rnark each digitize:

 0 No mark.
 1 Small x at coordinates.
 2 Lines between coordinates.
 3 Lines between coordinates and x at coordinates.

nend: Integer variable (input/output)
 This parameter returns the number of endpoints. These
 endpoints are stored in the xyz parameter.
xyz: Coordinate array variable of max elements (input/output)
 This parameter returns the model space coordinates.

4-92 UPL Revision 6.0

Statements and Intrinsics

GetEnt

Type

Intrinsic Procedure User Interface

Purpose

Allows the user to digitize entities in the same manner as with Personal
Designer. Using the Getdata processor, GetEnt returns a list of the MIB
numbers of digitized entities. Use EntMask to limit the types of entities that
GetEnt can select. Make any necessary calls to EntMask before a call to
GetEnt. Digitized entities will highlight in the same manner as when digitized in
Personal Designer. See Appendix H, "Writing Personal Designer Commands,"
for more information.

Syntax

GetEnt(maxmib, nent, miblist(1), iend)

Parameters

maxmib: Integer expression (input)
 This parameter specifies the maximum number-of entities
 the user can digitize. Any maxmib value greater than zero
 specifies the number of entities the user can select. The
 maximum is 1.000. lf the user wants to choose more than
 1.000 entities, set maxmib equal to negative one and use the
 BigMibList intrinsic function instead of the miblist
 parameter.
 When the program is run, if a colon, semi-colon, carriage
 return, or control C is input from a menu or the keyboard,
 GetEnt will stop accepting digitizes and the system variable
 LastChar will be given that character's ASCII value.
 Otherwise, LastChar will be set to one after max digitizes.
nent: Integer4 variable (input/output)
 This parameter returns the number of entities actually
 digitized.

4-93 Statements and Intrinsics

Statements and Intrinsics

miblist: Integer4 array of maxmib elements (input/output)
 lf maxmib is greater than zero, this array returns the MIB
 numbers; if maxmib is less than zero, it is a signal that the
 BigMibList function is used to retrieve the MIB numbers. In
 that case, declare miblist to be one element long.
iend: Integer variable (input/output)
 For a line or arc, iend returns the end that is closest to the
 digitized point. For a string, it returns the vertex that is
 closest to the digitized point. For crosshatching, it returns the
 closest end of the closest crosshatching line. For all other
 entities, it returns one.
 The order the user digitizes points when creating an entity
 corresponds to the number that will be assigned to the
 endpoint or string vertex.

Example

--- ----
-- This example shows how to call GetEnt

proc main

 integer4 NEnt, MIBList(100), MIB
 integer I, Iend

 print 'digitize entities:1',
 GetEnt(100, NEnt, MIBList(1), Iend)
 print
 print 'You digged these entities:'
 loop I=1 to integer(NEnt)
 MIB = MIBList(I)
 print MIB
 end loop

end proc
--- ---

4-94 UPL Revision 6.0

Statements and Intrinsics

GetHelp

Type

Intrinsic Procedure User Interface

Purpose

Allows the user to access the on-line help systern while in a UPL program.
Users stay in the help system until they press the eseape key to exit. See
SetHelp and Appendix H, "Writing Personal Designer Commands," for more
information

Syntax

GetHeip(helpindex)

Parameters

helpindex: Integer expression (input)
 This parameter specifies the help index number in the help
 definition file you want displayed. lf helpindex is not defined
 in the help file, the message "No Documentation Available"
 appears.

Example

Get_Help(1001)

4-95 Statements and Intrinsics

Statements and Intrinsics

GetKbdChar

Type

Intrinsic Function Operating System

Purpose

Checks whether or not a character has been input to the keyboard. lf it has, the
function returns an integer keyboard code. If not, it can wait for a character and
then return the code. GetKbdChar bypasses all of Personal Designer's other
input sources, (including tablet and execute files), and the keyboard macros.

Syntax

GetKbdChar(iopt)

Parameters

iopt: Integer expression (input)
 This parameter specifies how the UPL program waits for
 keyboard input.
 -1 checks the keyboard for a character. lf there is a
 character in the keyboard buffer, the function returns its
 ASCII value. lf there are no characters, the function
 immediately returns a negative one.
 0 waits until a character is input on the keyboard. lf there is
 a character in the keyboard buffer, the function returns its
 ASCII value or it waits until a character is typed in and then
 returns its ASCII value.
 > 0 waits a specified number of seconds for a character to
 be entered. If there is a character in the keyboard buffer, the
 function returns its ASCII value, or it waits iopt seconds for
 a character to be typed in. If no character has been typed in
 iopt seconds, it retums a negative one.

Examples

exit when char(GetKbdChar(-1» = "s" IDummy = GetKbd Char(0)

4-96 UPL Revision 6.0

Statements and Intrinsics

GetLayer

Type

Intrinsic Function Graphics

Purpose

Determines if the display of a particular layer is currently active; and, optionally,
if the layer is used.
If the ilayer parameter is positive, GetLayer determines whether the layer is
active. lf ilayer is negative, GetLayer determines whether the layer is active
and/or used. GetLayer returns the following integer codes:
0 Layer is inactive and not used (if ilayer was less than 0).
1 Layer is active and not used (if ilayer was less than 0).
2 Layer is inactive but the layer is used.
3 Layer is active and is used.
Note that testing for an active layer is faster than testing for a used layer. lf you
only need to know whether a layer is active, use positive values for ilayer to
allow your UPL program to run faster.

Syntax

GetLayer(ilayer)

Parameters

ilayer: Integer expression (input)
 Allows you to get information about a specific layer number.

Example

ISet = Get_Layer(22)

4-97 Statements and Intrinsics

Statements and Intrinsics

GetMenulnfo

Type

Intrinsic Procedure User Interface

Purpose

Returns information about an on-screen menu icon. An on-screen menu area
can contain an icon or an icon set. The information includes:
• the icon set (layer) number the area belongs to.
• the pixel coordinates of the areas lower left and upper right corner.
• the menu command string associated with the area. For more information,
see the Personal Designer and microDRAFT Revision 6.0 User Reference
Guide..

Syntax

GetMenulnfo(areanumber, setnumber,areacorners, cmdstring)

Parameters

areanumber: Integer expression (input)
 Allows you to get information about a specific icon menu
 number. To retrieve the area number, use FindMenu or
 SysVarl with function nine.

Setnumber: Integer variable (input/output)
 Specifies the icon set (layer) which the on-screen menu area
 belongs to. lf the area number is not found, a negative one is
 returned.
areacorners: Integer array of 4 integers (input/output)
 This parameter returns the lower left and upper right X, Y
 pixel coordinates of the on-screen menu area associated with
 areanumber. Use PixToRowCol to convert the pixel to row
 and column coordinates.
cmdstring: String variable (input/output)
 Returns the command string associated with areanumber.

Example

Get_Menu_Info(234, GNum, PickArea(1), CStr)

4-98 UPL Revision 6.0

Statements and Intrinsics

GetModifier

Type

Intrinsic Procedure User Interface

Purpose

Returns the modifier values the user has input with the AskModifers procedure.
See AskModifers and DefineModifier for more information.

Syntax

GetModifier(iword, selected, numvalue, strvalue)

Parameters

iword: Integer expression (input)
 This parameter specifies which modifier to return the value
 for. The modifier number is defined in the DerineModirier
 procedure.
selected: Boolean variable (input/output)
 This parameter returns true if the modifier is selected by the
 user or if it is initialized to true by the DefineModifier
 procedure. Otherwise, it is returned as false.
numvalue: Real variable (input/output)
 lf the modifier type is an integer or real, the numerical value
 of the modifier is retumed in numvalue. This value is always
 returned as a real even if it is defined as an integer.
 lf the modifier type is a boolean, numvalue returns 0.0 for
 false and 1.0 for true.
 lf the modifier type is a string, numvalue returns the number
 of characters in the strvalue parameter.
strvalue: String variable (input/output)
 If the modifier type is a string, (0, P, or Q), this parameter
 retums the modifier's string value. Otherwise a null string is
 retumed.

Example

Get_Modifier(2, Sel, NVal, Sval)

4-99 Statements and Intrinsics

Statements and Intrinsics

GetSerialNum

Type

Intrinsic Function Operating System

Purpose

Retrieves the six-digit serial number. On DOS systems it the Computervision
guard box number. On UNIX workstations, it may be the hostid or a portion of
the Ethernet address. It is usually used with the AccessCode function. The
function returns the serial number as a 6-character string.

Syntax

GetSerialNum

Parameters

The GetSerialNum function has no parameters.

Examples

print "The serial number is:",GetSerialNum()
Acode = AccessCode(KeyStr, GetSerialNum())

4-100 UPL Revision 6.0

Statements and Intrinsics

GetTagField

Type

Intrinsic Procedure Database Access

Purpose

Returns the value of an entity's tag field. See SetTagField for more information.

Syntax

GetTagField(mib, fieldnumber, fieldstring, errorflag)

Parameters

mib: Integer4 expression (input)
 This parameter is the MIB number of the entity with the tag.
fieldnumber: Integer expression (input)
 This parameter specifies which tag field to read. If the
 fieldnumber parameter equals zero, the system tag value is
 returned.
fieldstring: String variable (input/output)
 This is the value of the tag field. This parameter specifies the
 text string to put into the field. There is a total of 996 bytes
 for all tag fields. Each tag field uses two bytes. Each
 character given in fieldstring uses one byte. Be sure you do
 not exceed this limit.
errorflag: Integer variable (input/output)
 lf there is no tag attached to the entity, errorflag is returned
 as negative two. lf thefieldnumber is greater than the
 number of fields currently on the tag, errorflag is returned as
 negative one. Otherwise, errorflag is returned as zero.

Examples

Get_Tag_Field(Mib1, 1, F1dStr, IErr)
Get_Tag_Field(Mib, 0, SysTag, IErr)

4-101 Statements and Intrinsics

Statements and Intrinsics

GetView

Type

Intrinsic Procedure Geometric

Purpose

Returns a transformation matrix for a given view.

Syntax

GetView(viewno, transform(1))

Parameters

viewno: Integer expression (input)
 Specifies the view to get a transformation matrix for. lf the
 view for the number given is not defined, the current view
 transform is returned.
transform: Real array of 15 elements (input/output)
 This parameter returns the transformation matrix for the
 viewno parameter. Only the transform portion of the
 transformation matrix (the first 12 elements), is modified.
 The XIY/Z offset portion (elements 10, 11, and 12), is also
 modified if the viewno parameter is also a CPL number. The
 scaling factor portion of the transformation matrix is set to
 zero.

Examples

Get_View(8, View8Trans(1))
Get_View(76, Trans(1))

4-102 UPL Revision 6.0

Statements and Intrinsics

GoTo

Type

Statement Flow Control

Purpose

Transfers controi of the program to a specified label.

Syntax

GoTo label When bexpr

Keyword modifiers

label: Specifies the label to transfer control to. A label may be any
 legal UPL identifier name followed by a colon. It may have
 a maximum of 16 characters. Define label in the current
 procedure or function by using the label to start a statement.

The GoTo statement cannot transfer control outside the
procedure or function in which it is contained.

When bexpr: An optional clause that causes the GoTo statement to be
executed only when bexpr evaluates to true.

Examples

GOTO ASK

GOTO LAB2 WHEN I = J

LAB2: Print "Hello"

4-103 Statements and Intrinsics

Statements and Intrinsics

Group

Type

Statement Program Structure

Purpose

Deelares the name, data, aggregate, and storage types as well as the initial
values of global variabies and global named constants. The variabies and
constants declared in this section are available to all procedures and functions
in the programs. In addition, the variables and constants in this section may
also be accessed by other UPL programs which have been invoked by the
Process statement.
All declaration statements between the Group and End Group keywords form
the body of the group section.

The syntax of all the declarations is exactly the same as for local variables and
constants.

Syntax

Group

Keyword modifiers

The variable and constant names used in the Group section cannot be the
same as any parameter names for user-defined procedures and functions.
In order to share the variables and constants with another UPL program, the
variables must be defined in the same order in both Group seetions. That is, the
variable or constant to be shared between the programs must have the same
byte offset from the beginning of the Group section. This offset will depend upon
the number and data types of variables in the section before the shared ones.
Using the example below, to access Diam from another UPL program, that
program must have a Group section which included identical declarations.
Alternately, a dummy declaration could be made to fill the gap between the
beginning of the Group section to Diam. Such a declaration would be: Integer
Dummy(3). Maxlnt, Minlnt, and Tolerance will occupy the same amount of
space which is eight bytes.

4-104 UPL Revision 6.0

Statements and Intrinsics

The compiler directive $lnclude is useful in creating group section declarations.
A file of shared data declarations can be created and inserted into your
programs. Since the programs use the exact same declarations, the correct
offsets are assured.
For more information, see Chapter 2, Program Structure, and Appendix E,
"Internal Data Format."

Example

Group
 Const Integer MaxInt = 32767, MinInt = -32767
 Real Tolerance = 0.0001, Diam = 2.50
 String Title = "Wigit Design #345x", \

Dots = '..........'
End Group

4-105 Statements and Intrinsics

Statements and Intrinsics

GText

Type

Intrinsic Procedure Graphics

Purpose

Prints alphanumeric text anywhere on the graphics screen. Note that this
text is not inserted in the database. This text uses the character font
used in Personal Designer alphanumeric windows. The font is limited to
the font size specified by your system's graphics device .
See DrawText for related information.

Syntax

GText(color, ixloc, iyloc, hjust, vjust, text)

Parameters

color: Integer expression (input)
 This parameter specifies the color of text. Values are zero
 through 15. See the SELECT COLOR command in the
 Personal Designer and microDRAFT Revision 6. 0 User
 Reference Guide for a definition of color numbers.
ixloc: Integer expression (input)
 This parameter specifies the screen X pixel location where
 the text will be drawn.
iyloc: Integer expression (input)
 This parameter specifies the screen Y pixel location where
 the text will be drawn.
hjust: Integer expression (input)
 'Mis specifies the horizontal justification of the text.
 1 Leftjustification.
 2 Centerjustifieation.
 3 Rightjustification.
vjust: Integer expression (input)
 This specifies the vertical justification of the text.

4-106 UPL Revision 6.0

Statements and Intrinsics

1 Bottom justification.
2 Centerjustification.
3 Top justification.

text String expression (input)
 Text specifies the string to be displayed on the graphics
 screen. No special characters such as a carriage return
 (ASCII 13) or line feed (ASCII 10) are interpreted.

Examples

-- This messalge will print on one line
GText(1, 10, 300, 1, 1,\
 "some text on the screen #13"
 " more text on the screen")

GText(1, 10, 500-Iline*16, 1, 1, Line(Iline))

4-107 Statements and Intrinsics

Statements and Intrinsics

GWinClear

Type

Intrinsic Procedure Input/Output (Window)

Purpose

Clears the graphics window with the current color of the background.

Syntax

GWinClear(iwin)

Parameters

iwin: Integer expression (input)
 This parameter specifies the graphics window number to
 clear. Presently, graphics window one is the only valid value
 for iwin. Graphics window one is the sarne as window 11 in
 the Window statement. See DerineAW for more
 information.

Example

GWinClear(1)

4-108 UPL Revision 6.0

Statements and Intrinsics

HilightEnt

Type

Intrinsic Procedure User Interface

Purpose

Highlights a]ist of entities on the screen. An entity is highlighted in the same
manner as when it is digitized by the user in Personal Designer. Highlighting
turns off if you repaint the selected entities with RpntEnt or make another call to
HilightEnt.

Syntax

HilightEnt(miblist(1), nent, error)

Parameters

miblist: Integer4 variable or array (input/output)
 This specifies the]ist of entity MIB numbers to be
 highlighted.
nent: Integer4 expression (input)
 This parameter is the number of entity MIBs in miblist.
error: Integer variable (input/output)
 This parameter is the error flag:
 0 No error was found.

Example

HilightEnt(MList(1), 4, Ierr)

4-109 Statements and Intrinsics

Statements and Intrinsics

HilightMenu

Type

Intrinsic Procedure User Interface

Purpose

Highlights an on-screen menu icon with a specified color.

Syntax

HilightMenu(color,menuno)

Parameters

color: Integer expression (input)
 'Mis parameter specifies the color number (0 through 15), to
 highlight the on-screen menu icon with. See the SELECT
 COLOR command in the Personal Designer and
 microDRAFT Revision 6.0 User Reference Guide for color
 definitions.
 If the color parameter is greater than zero, the area is filled
 with the given color and the icon graphics disappear. If the
 parameter is less than zero, the area is filled with the given
 color and the icon graphics will remain, but the graphics will
 change to another color. A second calt to HilightMenu with
 a negative number turns off the highlighting. The suggested
 negative value to use is -15.
menuno: Integer expression (input)
 This parameter specifies the menu nuniber of the on-screen
 icon to highlight. The menu number can be retrieved by
 using the FindMenu procedure or by calling SysVarl with a
 value of nine for the ivar parameter.

Example

Hilight_Menu(-15, 342)

4-110 UPL Revision 6.0

Statements and Intrinsics

IDiskFree

Type

Intrinsic Function Operating System

Purpose

Returns the number of free bytes on the specified disk drive. IDiskFree returns
an integer4 value. Since the maximum value of an integer4 is about 2 billion, it
is can be used for drives containing less than 2 gigabytes of storage. This
routine replaces the DiskFree routine.

Syntax

IDiskFree(idrive)

Parameters

idrive: Integer expression (input)
 This parameter specifies the drive you want to query. In the
 table below, drive one starts with A and each successive
 drive is matched with the next letter in the alphabet. lf you
 do not have a drive B, drive C will still be matched with
 number three. Values are:

 0 current drive
 1 A
 2 B
 3 C
 etc. etc.

Examples

Free = IDiskFree(3)

Free = IDisk_Free(0)

4-111 Statements and Intrinsics

Statements and Intrinsics

lf-Then-Else-End lf

Type

Statement Flow Control

Purpose

Conditionally executes a group of statements.

Syntax

lf bexpr1 Then

statements executed if bexpr1 is true

Else lf bexpr2 Then

statements executed if bexpr2 is true

Else

statements executed if none of the bexpr are true

End If

Keyword modifiers

Alt statements between the If and Endlf keywords form the body of the
lf statement.

End If can be typed as shown or as one word, Endlf.

When the program encounters an lf statement, it evaluates the Boolean
expression. lf the expression is true, the program executes the statements
following Then and up to either the optional Else portion or the Endlf keyword.
lf the Boolean expression evaluates to false, the program skips the statements
after Then and executes the Else portion instead. In either case, only one
alternative is taken. See the second example.

There are several variations on the general format. First, you can use an lf
statement without the Else portion to let a program decide whether to perform a
certain action, as shown in the first example. lf A is less than or equal to B in
this example, the program simply skips this step.

4-112 UPL Revision 6.0

Statements and Intrinsics

You can also nest lf statements which allows you to make further
conditional tests by putting a whole lf statement inside another one. lf you
indent each level of nesting, it is easier to tell which lf and End lf keywords
are paired together.
lf and Loop statements combined can be nested up to 50 levels. See the
third example.
To test one variable for many different values, use Else lf, which is
equivalent to an End lf keyword followed by another lf statement. When
you use Else lf, you only need one End lf at the end of your code. Only
one set of statements is executed between the lf, Else lf, Else, and End lf
keywords. This is always the first set of statements whose bexpr evaluates
to true. lf none are true, the set following the final Else is executed. lf there

is not a final Else keyword, no statements are executed. Examples three
and four show the same lf statement coded two ways.

Examples

--Example 1: The simplest form of an if statement.

IP A > B THEN
 PRINT "GOOD VALUE"
ENDIF

--Example 2: A simple If-Then-Else statement.

IF X<5 OR X>100 THEN
 PRINT Y
ELSE
 PRINT X
ENDIF

--Example 3: Nested If-Then-Else statements.

IF A=B THEN
 A=C
ELSE
 IF A=C THEN
 A=D
 ELSE
 IF A=D THEN
 A=Z
 ELSE
 PRINT "A doesn't equal B,C,D"
 ENDIF
 ENDIF
ENDIP

4-113 Statements and Intrinsics

Statements and Intrinsics

--Example 4:
--If statement using Else-If clause.
--This is equivalent to the If statement in
--Example 3.

IF A=B THEN
 A=C
ELSE IF A=C THEN
 A=D
ELSE IP A=D THEN
 A=Z
ELSE
 PRINT "A doesn't equal B,C,D"
ENDIF

4-114 UPL Revision 6.0

Statements and Intrinsics

$lnclude

Type

Statement Compiler Directive

Purpose

Directs the compiler to read UPL program source code from the specified file.

Syntax

$lnclude filename

Keyword modifiers

filename: Specifies the name of the file to read UPL source from. It must
be a literal or named string constant which specifies a legal
file name for your operating system (DOS or UNIX
 When the end of this file is reached, the compiler resumes
reading program source in the file from which it encountered
the previous $lnclude directive.
 Included files may be nested up to four levels deep. That is,
an included file may contain other $lnclude directives, and
so on.
 You can develop libraries of subroutines and declarations to
use in building more complex UPL programs. This directive
allows you to easily insert them. Doing so ensures that you
use the same code in each program. This can reduce
problems in your programs.

Examples

$include 'vardec.ins'

$INCLUDE 'MATH.LIB'

4-115 Statements and Intrinsics

Statements and Intrinsics

Index

Type

Intrinsic Function String Handling

Purpose

Locates the position of a substring within a string. This function returns an
integer value which is the position of the first occurrence of the substring. lf no
match is found, zero is returned.

Syntax

Index(sexpr1, iexpr, subsexpr)

Parameters

sexpr1: String expression (input)
 This parameter specifies the string to be searched.
iexpr: Integer expression (input)
 This parameter specifies the position in sexpri to start
 searching for the substring. By updating this value, you may
 search for additional occurrences of subsexpr.
subsexpr: String expression (input)
 This parameter specifies the substring to find.

4-116 UPL Revision 6.0

Statements and Intrinsics

InputStr

Type

Intrinsic Procedure User Interface

Purpose

Inputs a given character string to the Personal Designer input buffer. This
procedure can be used to set up the input buffer so that a subsequent call to
GetDig, GetEnd, or GetEnt will read a GetData modifier or reference such as
end, win, mib, etc.
This can be used in conjunction with the Flushluput procedure.

Syntax

InputStr(str)

Parameters

str: String expression (input)
 Character string to 'feed' to 'feed' to Personal Designer. lt
 may be up to 400 characters long.

Example

-- This example shows how to call
-- InputStr cind FlushInput.

proc main

integer4 NEnt, MIBList(100), MIB
integer I, Iend
print 'digitize corners of window:',
FlushInput()
InputStr(' win ')
GetEnt(100, NEnt, MIBList(1), Iend)
print
print 'You windowed these entities:'
loop I=1 to integer(NEnt)

MIB = MIBList(I)
print MIB

end loop
end proc

4-117 Statements and Intrinsics

Statements and Intrinsics

Insert

Type

Statement Database Access

Purpose

Allows a new entity to be added to the current drawing database.
Entities are referenced by Master Index Block (MIB) numbers. The number
identifies an entity and gives its location in the database. An MIB is assigned
when an entity is inserted into the part database by Personal Designer or a UPL
program. The number remains valid untit the part is filed or exited with the pack
database option.
After the Insert statement is executed, the system variable DBStatus is set.
DBStatus gives the result of the insertion. See Appendix B, "System Variabies,"
for more information.

Syntax

Insert enttype entloc entatts entdata Rpnt(bexpr)

Keyword modifiers

enttype: Specifies the type of entity to insert: Line, String, Arc, Text
 or Point. The enttype must immediately follow the Insert
 keyword.
entloc: Optional clause that returns the location of the inserted
 entity. lt uses the Entld keyword:

 Entld(i4var)
 Returns the MIB number of the inserted entity. Replace
 i4var with an integer4 variable. When the statement is

 executed, ivar returns the MIB number of the entity inserted.

entatts: Optional keywords that let you specify the attributes
 common to all entities. All entatts keywords have a default
 value; if you use a keyword, the value specified in the
 expression becomes the new default value. The default value
 changes when the keyword is used again in another Insert or
 Modify statement. You can use the following entatts
 keywords in any order and with all entity types:

4-118 UPL Revision 6.0

Statements and Intrinsics

Color(iexpr) where iexpr is an integer expression which
gives the color number for the new entity. The default is the
color currently selected by Personal Designer.

Font(iexpr) where iexpr gives the font number for the new
entity. The default is the font currently selected in Personal
Designer.

Group(iexpr) where iexpr gives the group number of
inserted entities. There is no default value.

Layer(iexpr) where iexpr gives the layer for the new entity.
The default is the currently selected layer in Personal
Designer.

View(iexpr) where iexpr gives the view you will insert your
geometry relative to. Without this keyword, the geometry will
be inserted in model space which is view one. lf this keyword
is used, it affects the data specified in the entdata keywords.

Vvis(iexpr) where iexpr gives the view number that the
added entity is visible in (zero to be visible in all views). The
default is zero.

entdata: Lets you specify data which is specific to different entity
 types. These keywords also have a default value; if you use
 an entdata keyword, the value given in the expression
 becomes the new default value. The default value is changed
 when you use the keyword again in another Insert or
 Modify statement.

 Replace entdata with keywords for the specific enttype. The
 following list describes the keywords for each entity type:

For Lines:

 Ends(cexpr1, cexpr2)
 Specify the endpoint coordinates after the keyword Ends.
 Replace cexpr1 with end one and cexpr2 with end two of the

 line. Both are coordinate expressions. The default for cexpr1

 and cexpr2 is [0.0,0.0,0.0]

4-119 Statements and Intrinsics

Statements and Intrinsics

For Strings:

Verts(iexpr1, carray(iexpr2)) Specifies the coordinates for
the vertices of a string entity in an array after the keyword
Verts. Replace carray with the name of a coordinate array
which speeifies the coordinates for the string vertices.
Replace iexpr1 with the number of vertices to get from carray,

and iexpr2 with the first element to get out of carray.

For Arcs:

Specify the characteristics of the arc after one of the following keywords.
Arcs are drawn counterclockwise.

Org(cexpr) Replace cexpr with the origin of the arc. The
default is [0.0,0.0,0.01.

Radius(rexpr) Replace rexpr with the radius of the arc. The
default value is 1.0.

AB(rexpr) Replace rexpr with the beginning angle of the arc
in degrees. The default is 0.0.

AE(rexpr) Replace rexpr with the ending angle of the arc in
degrees. The default is 360.0.

ArcEnds(cexpr1, cexpr2) lf this keyword is given, it replaces
AB and AE. Either AB and AE or ArcEnds determine the
beginning and ending angles of the arc. The arc is drawn
such that a line from the origin (as specified by Org) to cexpr1
determines the beginning angle of the arc, and a line from the
origin (as specified by Org) to cexpr2 determines the ending
angle of the arc. The arc has a radius specified by Radius
above. There is no default for AreEnds; values for AB and
AE are used to find the default beginning and ending angles
of the arc.

4-120 UPL Revision 6.0

Statements and Intrinsics

For Text:

Specify the characteristics of the text to be inserted after one of the
following keywords:

Ang(rexpr) Replace rexpr with the angle the text is to be
inserted at. The angle is in degrees. The default is zero.

Hgt(rexpr) Replace rexpr with the text character height. The
default is 0.5.

Just(iexpr) Replace iexpr with one of the text justification
codes:

 1 left justification.
 2 right justification.
 3 center justification.

Lnsp(rexpr) Replace rexpr with the text line spacing factor.
The default is 1.5.

 Org(cexpr)

 Replace cexpr with the text origin. The default is
 [0.0,0.0,0.0]

Txt(sexpr) Replace sexpr with a string expression that gives
the actual text to be inserted. Maximum is 1000 characters.
The default is an empty string.

Wdt(rexpr) Replace rexpr with the text character width. The
default is 0.5.

For points:

Loc(cexpr) Replace cexpr with the coordinate of the point to
be inserted. The default is [0.0,0.0,0.0].

4-121 Statements and Intrinsics

Statements and Intrinsics

For all above entities:

Rpnt(bexpr) An optional clause; replace bexpr with the
Boolean expression after the keyword Rpnt. If bexpr
evaluates to true, then the entity is repainted after it is added
to the drawing data base. Otherwise, it is not. The default is
false.

All entatts and entdata keywords may be used in any order, and may be
separated by commas (,) or spaces

Examples

INSERT LINE ENDS([], [1.0, 1.0]), COLOR(IC), \
 FONT(3),RPNT(TRUE)

INSERT STRING VERTS(12, VERTICES(1))

INSERT ARC ORG(ORIGIN + [1.0,-1.0]) AB(45.0)\
 AE(135.0) RADIUS(R)

INSERT ARC RADIUS(D/2.0), ORG([]), ARCENDS(C1, C2)\
 COLOR(5)

INSERT TEXT HGT(H), WDT(H * 2.0), ORG(TORG),\
 TXT("Some text")

INSERT POINT LOC(PNTS(I + 1)) LAYER(10)

4-122 UPL Revision 6.0

Statements and Intrinsics

Integer

Type

Statement Declaration

Purpose

Declares the name, data type, aggregate type, and initial value of an integer
variable. An initial value is optional. Array variabies must be declared with their
maximum subscripts.
Variables of integer data type contain whole number values ranging from
-32768 to 32767.

Syntax

Integer ivar = iconstl | iarray(iconst2,...),...

Keyword modifiers

ivar: Integer variable name. Only the first 16 characters are used.

Iconst1: Optional initial value for a sealar variable. This value must
 be a literal or named integer constant. lf the variable is
 declared in the Group section, it will be set to this value once
 at the beginning of the program. lf the variable is declared in
 a procedure or function, it will be set to this value each time
 the procedure or function is called.
ivar: Integer array variable name. Only the first 16 characters are used.

iconst2: Array subscripts. These declare the variable to have aggregate type
array. Up to five subscripts may be declared. The subscripts must be
enclosed in parentheses. Array variables may not be given an initial
value.
All declaration statements must occur after the Proc, Func, and
Group statements. They must appear before any other type of
statements inside a procedure or function and are the only
statements allowed inside the Group section. For more information,
see Chapter 2, Program Structure, and Appendix E, "Internal Data
Format."

Example

Integer Int, Count=0, i, IntArray(10)
Integer Maximum = 32767

4-123 Statements and Intrinsics

Statements and Intrinsics

Integer

Type

Intrinsic Function Data Conversion

Purpose

Converts a Boolean, integer4, real or string expression to an integer value.
Returns an integer. For Boolean values, false equals 0 and true equals 1. For
real values, the decimal portion is truncated. Integer4 and real values must be
converted with care. lf the exceed the limits of integer (-32,768 to +32,767) the
most significant places are truncated.

Syntax

Integer (expr)

Parameters

expr: Boolean, integer4, real or string expression (input) to be converted.

4-124 UPL Revision 6. 0

Statements and Intrinsics

Integer4

Type

Statement Declaration

Purpose

Declares the name, data type, aggregate type, and initial value of an integer4
variable, also often called a long integer. lt is represented internally by a 4-byte
variable. An initial value is optional. Array variables must be declared with their
maximum subscripts.

Variabies of integer4 data type contain whole number values ranging from
-2,147,483,648 to 2,147,483,647 or approximately plus or minus 2 billion.

Syntax

Integer4 ivar = i4const 1 | iarray(iconst2,...)....

Keyword modifiers

ivar: Name of the integer4 variable. Only the first 16 characters are used.

i4const1: Optional initial value for a scalar variable. This value must be a literal
 or named integer4 constant. lf the variable is declared in the Group

section, it will be set to this value once at the beginning of the
program. lf the variable is declared in a procedure or function, it will
be set to this value each time the procedure or function is called.

iarray: Name of the integer4 array variable. Only the first 16 characters are
used.

iconst2: Array subscripts. These declare the variable to have aggregate type
array. Up to five subscripts may be declared. The subscripts must be
enclosed in parentheses. Array variables may not be given an initial
value.

4-125 Statements and Intrinsics

Statements and Intrinsics

All declaration statements must occur after the Proc, Func, and Group
statements. They must appear before any other type of statements inside a
procedure or function and are the only statements allowed inside the Group
section.
For more information, see Chapter 2, Program Structure, and Appendix E,
"Internal Data Format."

Example

Integer4 Int, Count=0, i, IntArray(10)

Integer4 Maximum = 2,147,483,647

4-126 UPL Revision 6.0

Statements and Intrinsics

Integer4

Type

Intrinsic Function Data Conversion

Purpose

Converts a Boolean, real, integer or string expression to an integer4, or long
integer, value. Returns an integer4. For Boolean values, false equals 0 and true
equals 1. For real values, the decimal portion is truncated.

When an [shortl integer is converted to an integer4, the value is not changed.
The storage format is converted from 2-byte format to 4-byte format. This
conversion is useful in assigning an integer to an integer4 variable or passing
an integer to a function that requires an integer4 argument.

Syntax

Integer4 (expr)

Parameters

expr: Boolean, real, integer or string expression (input).
 Expression to be converted.

4-127 Statements and Intrinsics

Statements and Intrinsics

LastDig

Type

Intrinsic Function User Interface

Purpose

Returns the last digitized location that the system received from the user. The
location can be digitized in several Getdata modes such as DIG, ENT, END,
and ORG- for more information, see Getdata Capabilities in Chapter2of
thePersonalDesignerandmicroDRAFTRevision6.OUser Reference Guide. The
location returned is in model space coordinates.

Syntax

LastDig()

Parameters

The LastDig function has no parameters.

Examples

if vlen([], LastDig()) <= 4.0 then
 print "the last digitize was within 4 units of the
 origin"
endif

C1 = LastDig()
Print "you last digitized", C1

4-128 UPL Revision 6.0

Statements and Intrinsics

LinlntOf

Type

Intrinsic Procedure Geometrie

Purpose

Determines the true and apparent intersecting points of two lines.

Syntax

LinlntOf(l1end1, l1end2,l2end1, l2end2, int1, int2)

Parameters

l1end1: Coordinate expression (input)
 This speeifies the first end of line one.
l1end2: Coordinate expression (input)
 This parameter specifies the second end of line one.
l2end1: Coordinate expression (input)
 This specifies the first end of line two.
l2end2: Coordinate expression (input)
 This parameter specifies the second end of line two.
Int1: Coordinate variable (input/output)
 This returns the intersection point on line one.
int2: Coordinate variable (input/output)
 This returns the intersecting point on line two. lf the lines
 truly intersect in model space, int1 equals int2. lf you are
 interested in intersections within some tolerance value, use
 the VLen function (VLen(int1, int2)) and compare its result
 against your tolerance value.

4-129 Statements and Intrinsics

Statements and Intrinsics

Ln

Type

Intrinsic Function Arithmetic

Purpose

Returns the natural logarithm of a real expression. This funetion returns a real
value.

Syntax

Ln(rexpr)

Parameters

rexpr: Real expression (input)
 This parameter speeifies the real expression whose natural
 logarithm will be returned.

4-130 UPL Revision 6.0

Statements and Intrinsics

Log

Type

Intrinsic Function Arithmetic

Purpose

Returns the base 10 logarithm of a real expression. This function returns a real
value.

Syntax

Log(rexpr)

Parameters

rexpr: Real expression (input)
 This parameter specifies the real expression whose base 10
 logarithm will be returned.

4-131 Statements and Intrinsics

Statements and Intrinsics

Loop-End Loop

Type

Statement Flow Control

Purpose

Executes a group of statements zero or more times.

Syntax

Loop var = expr1 To expr2 By expr3
 Statements
End Loop

Keyword modifiers

Each Loop statement keyword has a matching End Loop keyword. All
statements between the Loop and End Loop keywords form the body of the
loop. End Loop can be typed as shown or as one word, Endloop.

var = expr1 To expr2 By expr3

Optional clause. Replace var with an integer, integer4 or real
variable that will count the number of loops executed. You can use
var anywhere inside the loop body. However, you should not make
any assignment to this variable.

Expr1, expr2, and expr3

Replace with the sarne data type (integer, integer4 or real) as var.
They are evaluated onee at the beginning of the loop. The default
for expr3 is one if var is an integer or integer4; and 1.0 if var is a
real number.

NOTE: By expr3 is an optional clause within the first clause,

var = expri To expr2.

When executing a loop, the loop index var is assigned the value of

expr1. The statements are then executed. When End Loop is

encountered, control passes back to the Loop keyword. The var

variable is then incremented by expr3. If var <= expr2, the

statements are executed again and var is incremented by expr3.

This sequence repeats until var > expr2 at which point control
passes to the statement immediately following the End Loop
keyword. (See Example 1 below.)

4-132 UPL Revision 6.0

Statements and Intrinsics

This logic is reversed if expr1 is greater than expr2 and expr3
is negative. See Example 2 below.

Loop statements may be nested; each Loop keyword is
matehed with the closest End Loop keyword. The End Loop
must follow the Loop and not be preceded by another
unmatched Loop keyword. (See Example 3 below.)

If you do not give the optional var and expr, the Loop
statement will loop until an Exit statement is encountered, or
until a GoTo statement transfers control to outside of the loop.
See Example 4 below. GoTo must not transfer control into the
middle of a Loop statement.

Examples

-- Example 1:

LOOP J=1 TO NUM COUNT
 S=S+1
 PRINT S
END LOOP

-- Example 2: A "count down" loop

LOOP J=100 TO 1 BY -1
 PRINT J
END LOOP

-- Example 3:

loop i = 0 to 90 by 10
 loop j = 1 to 10
 print "the number is", i + j
 k = i + j
 end loop
end loop
print "the last number was",k

-- Example 4:

Loop
 accept inum prompt("enter an integer 1-10")
 exit when (inum > 0) and (inum < 11)
end loop

4-133 Statements and Intrinsics

Statements and Intrinsics

Map2Px

Type

Intrinsic Procedure Geometric

Purpose

Maps view coordinates to screen pixel coordinates.

Syntax

Map2Px(xy, ixy(1)

Parameters

xy: Coordinate expression (input)
 This parameter specifies the view space coordinates to
 convert to pixel space coordinates.
ixy: Integer array of 2 elements (input/output)
 This parameter returns the pixel space coordinates. Element
 one is the X pixel value; element two is the Y pixel value.

4-134 UPL Revision 6.0

Statements and Intrinsics

Map2PxN

Type

Intrinsic Procedure Geometric

Purpose

Maps view coordinates to screen pixel coordinates.

Syntax

Map2PxN(pnts(1), ixy(1), npnts)

Parameters

pnts: Coordinate array of npnts (input/output)
 This parameter specifies the view coordinate points to be
 mapped.
ixy: Integer array of npnts*2 elements (input/output)
 This parameter retums pairs of mapped X and Y coordinates
 in screen pixels. The first element of a pair is the is the X
 pixel value; the second is the Y pixel value.
npnts: Integer expression (input)

 This specifies the number of points in pnts.

4-135 Statements and Intrinsics

Statements and Intrinsics

MapCPLM

Type

Intrinsic Function Geometric

Purpose

Maps a point from CPL coordinates to model space coordinates and returns the
model space coordinates. The currently selected CPL is used. lf no CPL is
selected, the value of pnt is returned.

Syntax

MapCPLM(pnt)

Parameters

pnt: Coordinate expression (input)
 This parameter specifies the point to be mapped.

4-136 UPL Revision 6.0

Statements and Intrinsics

MapFrom

Type

Intrinsic Procedure Geometric

Purpose

Maps a set of points from a transformed coordinate system represented by
the transform parameter to the model coordinate system. MapFrom is a
generalized version of MapVM. (The latter routine specifically maps points
from view to model coordinates.) MapFrom performs the inverse function
of MapTo. It is equivalent to calling Transpose to invert a transformation
previously used by MapTo and then calling MapTo again.

The transform parameter may be obtained from intrinsics such as Mat3P,
RotMat, or even GetView or GetCPL.

Syntax

MapFrom (transform(1), pnts(1), npnts)

Parameters

transform: Real array of 15 elements (input/output)
 This parameter specifies the transformation matrix used to
 map the points. Only the first nine elements of transform are
 used.
pnts: Coordinate array of npnts elements (input/output)
 On input, this parameter specifies the points to be mapped.
 On output, it retums the mapped points.
npnts: Integer expression (input)

 This parameter specifies the number of points in pnts to be
 mapped.

Examples

This exelmple demonstrates the use of MapTo and
MapFrom. It inserts a line in the current view, map s
the lines endpoints from the current view to a view
of your choice, and prints out the endpoints in the
view you chose.

4-137 Statements and Intrinsics

Statements and Intrinsics

proc main

 real Transform(15)
 coord EndPnts(2)
 integer CurView, WhichView

 SysVarI(4, CurView)
 EndPnts(1) = [0,0,0]
 EndPnts(2) = [1,0,0]
 insert line ends(EndPnts(1), EndPnts(2)) \

 view(CurView) rpnt(true)
 print 'In this view the line runs from '
 print EndPnts(1),' to ',EndPnts(2)

 accept WhichView newline \

 prompt('Enter an existing view #: ')

 GetView(CurView, Transform(1))
 MapFrom(Transform(1), EndPnts(1), 2)
 GetView(WhichView, Transform(1))
 MapTo(Transform(1), EndPnts(1), 2)
 print 'In view ',WhichView,' the line runs',
 print 'from ',EndPnts(1),' to ',EndPnts(2)

end proc

4-138 UPL Revision 6.0

Statements and Intrinsics

MaPix2

Type

Intrinsic Procedure Geometric

Purpose

Maps pixel space coordinates to view space coordinates.

Syntax

MaPix2(ixy(1), xy)

Parameters

ixy: Integer array of 2 elements (input/output)
 This parameter specifies the pixel space coordinates to
 convert to view space coordinates. Elernent one is the X
 value; elernent two is the Y value.
xy: Coordinate variable (input/output)
 This parameter returns the view space coordinates. The Z
 value represents the currently selected depth.

4-139 Statements and Intrinsics

Statements and Intrinsics

MaPix2N

Type

Intrinsic Procedure Geometric

Purpose

Maps an array of points frorn pixel coordinates to current view coordinates.

Syntax

MaPix2N(ixy(1), pnts(1), npnts)

Parameters

ixy: Integer array of npnts*2 elements (input/output)
 This parameter specifies the points to be mapped from pixel
 coordinates. The pixel coordinates are in pairs. The first is
 the pixel X coordinate and the second is the pixel Y
 coordinate.
pnts: Coordinate array of npnts elements (input/output)
 This parameter returns the points mapped to the currently
 selected view.
npnts: Integer expression (input)

 This specifies the number of points in pnts to be mapped.

4-140 UPL Revision 6.0

Statements and Intrinsics

MapMCPL

Type

Intrinsic Function Geometric

Purpose

Maps a point from model space coordinates to CPL space coordinates and
returns the CPL space coordinates. The currently selected CPL is used. lf no
CPL is selected, the value of pnt is returned.

Syntax

MapMCPL(pnt)

Parameters

pnt: Coordinate expression (input)
 This parameter specifies the point to be mapped.

4-141 Statements and Intrinsics

Statements and Intrinsics

MapMV

Type

Intrinsic Function Geometric

Purpose

Maps a point from model space coordinates to view space coordinates. The
currently selected view is used. This function returns a coordinate value.

Syntax

MapMV(pnt)

Parameters

pnt: Coordinate expression (input)
 This parameter specifies the point to be mapped.

4-142 UPL Revision 6.0

Statements and Intrinsics

MapTo

Type

Intrinsic Procedure Geometric

Purpose

Maps a set of points from the model coordinate System to a new coordinate
system represented by the transform parameter. MapTo is a generalized
version of MapMV. (The latter routine specifically maps points from model to
view coordinates.)
MapTo and MapFrom are inverse functions. The points may be restored to
their previous coordinate system via a call to MapFrom. lt performs the inverse
operation of MapTo.
The transform parameter may be obtained from intrinsics such as Mat3P,
RotMat, or even GetView or GetCPL.

Syntax

MapTo(transform(1), pnts(1), npnts)

Parameters

transform: Real array of 15 elements (input/output)
 This specifies the transformation matrix used to map the
 points. Only the first nine elements of transform are used.
pnts: Coordinate array of npnts (input/output)
 On input, this parameter specifies the points to be mapped.
 On output, it returns the mapped points.
npnts: Integer expression (input)

 This specifies the number of points in pnts to be mapped.

4-143 Statements and Intrinsics

Statements and Intrinsics

Examples

-- This example demonstrates the use of MapTo and
-- MapFrom. It inserts a line in the current view,
-- maps the lines endpoints from the current view
-- to a view of your choice, and prints out the
-- endpoints in the view you chose.

proc main

 real Transform(15)
 coord EndPnts(2)
 integer CurView, WhichView

 SysVarI(4, CurView)
 EndPnts(1) = [0,0,0]
 EndPnts(2) = [1,0,0]
 insert line ends(EndPnts(1), EndPnts(2)) \

 view(CurView) rpnt(true)

 print 'In this view the line runs from '
 print EndPnts(1),' to ',EndPnts(2)

 accept WhichView newline \

 prompt('Enter an existing view #:')

 GetView(CurView, Transform(1))
 MapFrom(Transform(1), EndPnts(1), 2)
 GetView(WhichView, Transform(1))
 MapTo(Transform(1), EndPnts(1), 2)
 print 'In view ',WhichView,' the line runs',
 print 'from ',EndPnts(1),' to ',EndPnts(2)

end proc

4-144 UPL Revision 6.0

Statements and Intrinsics

MapTT

Type

Intrinsic Procedure Geometric

Purpose

Maps points from one coordinate system to another coordinate system.
Coordinate systems can be defined by the transformation for views or
construction planes- see GetCPL, GetView, Mat3P and RotMat for more
information. This procedure is equivalent to:

MapFrom(transform1(1), pnts(1), npnts)

MapTo(transform2(1), pnts(1), npnts)

Syntax

MapTT(transform1(1), transform2(1), pnts(1), npnts)

Parameters

transform1: Real array of 15 elements (input/output)
 This specifies the transforrn frorn which to map points.
transform2: Real array of 15 elements (input/output)
 This specifies the transform to which to map points.
pnts: Coordinate array of npnts elements (input/output)
 On input, this parameter specifies the points to be mapped.
 On output, it returns the mapped points.
npnts: Integer expression (input)

 This specifies the number of points in pnts to be mapped.

4-145 Statements and Intrinsics

Statements and Intrinsics

MapVM

Type

Intrinsie Function Geometric

Purpose

Maps a point from view space coordinates to model space coordinates. This
function returns the model space coordinates. The currently selected view is
used.

Syntax

MapVM(pnt)

Parameters

pnt: Coordinate expression (input)
 This parameter specifies the point to be mapped.

4-146 UPL Revision 6.0

Statements and Intrinsics

Mat3P

Type

Intrinsic Procedure Geometric

Purpose

Produees a transformation matrix for a coordinate system from three
points in space.
The coordinate system is defined as follows: the X-axis is defined by the
vector form pntl parameter to pnt2 parameter. The Y-axis is defined by a
line perpendicular to the X-axis and passing through the pnt3 parameter.
The Z-axis is perpendicular to the XY plane. The positive Z direction is
defined by the right hand rule.

Syntax

Mat3P(pnt1, pnt2, pnt3, transform (1))

Parameters

pnt1, pnt2, pnt3: Coordinate expressions (input) These specify the points
used to create the transformation matrix.

transform: Real array of 15 elernents (input/output)

This parameter returns a view transformation matrix for
the coordinate system which is defined by three points.

4-147 Statements and Intrinsics

Statements and Intrinsics

Max

Type

Intrinsic Function Arithmetic

Purpose

Returns the value of the largest integer, integer4, real, or string parameter.
The number of parameters allowed is unlimited but they must all have the
same data type.
NOTE: Strings are compared in the following way: all strings are extended
to the length of the largest string with blanks (ASCII character 32 in
decimal). Strings are then compared character by character by their ASCII
value. Lower ASCII values are considered to be less than higher ASCII
values; i.e. A < B< C.

Syntax

Max(expr1, expr2,...)

Parameters

Expr1: Integer, integer4, real, or string expression (input)
 This parameter specifies the first integer, integer4, real, or
 string expression.
expr2: Integer, integer4, real, or string expression (input)
 This parameter specifies the second integer, integer4, real, or
 string expression.

Examples

A = Max(X,Y,Z)

Largest = Max(i, j, 10, k, 1 x 2)

4-148 UPL Revision 6.0

Statements and Intrinsics

MemAvail

Type

Intrinsic Function Operating System

Purpose

Returns the number of 128 byte blocks available on the UPL data stack. The
data stack contains local variable data, parameters, procedure, and function
return addresses. This function returns an integer.

Syntax

MemAvail()

Parameters

The MemAvail function has no parameters.

4-149 Statements and Intrinsics

Statements and Intrinsics

MenuCmd

Type

Intrinsic Procedure User Interface

Purpose

Sends an on-screen menu command string to the menu command processor.
Refer to the Personal Designer and mierodraft Revision 6.0 User Reference
Guide, for a description of the menu commands.

Syntax

MenuCmd(menucmdstr)

Parameters

Menucmdstr: String expression (input)
 This specifies the menu command string to send to the menu
 command processor. The "\" character usually found in
 menu files cannot be used in the menucmdstr parameter. The
 above remark has one exception, that is if it is used in a
 string with the P command.

Example

--turn off menu 17, put up menu 18.

MenuCmd('M17-M18+')

4-150 UPL Revision 6.0

Statements and Intrinsics

MibTag

Type

Intrinsic Procedure Database Access

Purpose

Returns a unique entity tao, value, given the MIB number of an entity. If the
entity has no tag, the tagstr parameter is returned with a length of zero.
There are two parts to an entity tag. The first part is the entity tag value. This is
an integer which starts at zero and goes to values over four million. UPL cannot
support such a large number as an integer, or integer4 so the number's
equivalent representation is returned in a string of 10 characters. An entity can
have only one entity tag value at a time.
The second part of an entity tag is the tag field. lt is also a string of characters
and it can hold any information associated with the tagged entity. See
SetTagField and GetTagField for more information on tag fields.

Syntax

MibTag(mib, tagvalstr)

Parameters

mib: Integer4 expression (input)
 This parameter specifies the MIB number of the entity to get
 the tag value for.
tagvalstr: String variable of 10 characters (input/output)
 This returns the tag value.

4-151 Statements and Intrinsics

Statements and Intrinsics

Min

Type

Intrinsic Function Arithmetic

Purpose

Returns the value of the smallest integer, integer4, real, or string parameter.
The number of parameters allowed is unlimited but they must all have the same
data type.
NOTE: Strings are compared in the following way: all strings are extended to
the length of the largest string with blanks (ASCII character 32 in decirnal).
Strings are then compared character by character by their ASCII value. Lower
ASCII values are considered to be less than higher ASCII values; i.e. A < B< C.

Syntax

Min(exprl, expr2,...)

Parameters

expr1: Integer, integer4, real, or string expression (input)
 This parameter specifies the first integer, integer4, real, or
 string expression.
expr2: Integer, integer4, real, or string expression (input)
 This parameter specifies the second integer, real, or string
 expression.

Examples

B = Min(r, s, t)

smallest = (1, m, 2, n, 5 * i)

4-152 UPL Revision 6.0

Statements and Intrinsics

MirEnt

Type

Intrinsic Procedure Database Access

Purpose

Mirrors the entities about a given plane. The plane is defined by a
transformation matrix which can be generated by calling Mat3P or similar
functions.

Syntax

MirEnt(miblist(1), nent, transform(1))

Parameters

miblist: Integer4 array of nent elements (input/output)
 This parameter specifies the entities to be mirrored.
nent: Integer4 expression. Specifies the number of entities to be
 mirrored.
transform: Real array of 15 elements (input/output)
 This specifies the transformation matrix that defines the
 plane on which to map the points. Elements 10, 11, and 12
 specify the origin of the plane.

4-153 Statements and Intrinsics

Statements and Intrinsics

MirEntCopy

Type

Intrinsic Procedure Database Access

Purpose

Mirrors a copy of entities about a given plane. The plane is defined by a
transformation matrix which can be generated by calling Mat3P or similar
functions. The copied entities are added to the end of the database.

Syntax

MirEnt(miblist(1), nent, transform(1))

Parameters

miblist: Integer4 array of nent elements (input/output)
 This parameter specifies the entities to be mirrored.
nent: Integer4 expression. Specifies the number of entities to be
 mirrored.
transform: Real array of 15 elements (input/output)
 This specifies the transformation matrix that defines the
 plane on which to map the points. Elements 10, 11, and 12
 specify the origin of the plane.

4-154 UPL Revision 6.0

Statements and Intrinsics

MirPnt

Type

Intrinsic Procedure Geometric

Purpose

Mirrors a set of points about a given plane. The plane is defined by a
transformation matrix which can be generated by calling either the GetCPL,
GetView, or Map3P procedures.

Syntax

MirPnt(transform(1), pnts(1), npnts)

Parameters

transfom: Real array of 15 elements (input/output)
 This specifies the transformation matrix that defines the
 plane on which to map the points. Elements 10, 11, and 12
 specify the origin of the plane.
pnts: Coordinate array of npnts elements (input/output)
 On input, this parameter specifies the points to be mirrored.
 On output, it returns the mirrored points.
npnts: Integer expression (input)

 This parameter specifies the number of points in the pnts
 array.

4-155 Statements and Intrinsics

Statements and Intrinsics

ModI

Type

Intrinsic Function Arithmetic

Purpose

Returns the modulo, (or remainder), of the num and divisor parameters. These
parameters must be integers; the function also returns an integer.

Syntax

Modl(num, divisor)

Parameters

num: Integer expression (input)
 This specifies the input number, or the dividend.
divisor: Integer expression (input)
 This specifies the divisor for the input number.

4-156 UPL Revision 6.0

Statements and Intrinsics

ModI4

Type

Intrinsic Function Arithmetic

Purpose

Returns the modulo, (or remainder), of the num and divisor parameters. These
parameters must be of type integer4; the function also returns an integer4.

Syntax

Modl(num, divisor)

Parameters

num: Integer4 expression (input)
 This specifies the input number, or the dividend.
divisor: Integer4 expression (input)
 This specifies the divisor for the input number.

4-157 Statements and Intrinsics

Statements and Intrinsics

Modify

Type

Statement Database Access

Purpose

Modifies existing entities in the drawing database. Only the current part
file may be modified.
Entities are referenced by Master Index Block (MIB) numbers. The
number identifies an entity and gives its location in the database. An MIB
is assigned when an entity is inserted into the part database by Personal
Designer or a UPL program. The number remains valid until the part is
filed or exited with the pack database option.
After the Modify statement is executed, the system variable DBStatus is
set. DBStatus gives the result of the insertion. See Appendix B, "System
Variables," for more information.

Syntax

Modify enttype entloc entatts entdata Rpnt(bexpr)

Keyword modifiers

enttype: Optional keyword that gives the type of entity to be modified.
Replace enttype with one of the following keywords: Line, String,
Arc, Text or Point. The enttype keyword must directly follow the
Modify keyword.

entloc: Specifies which entity to modify. You must use an entloc keyword

in this statement. The entloc keyword can be used in two ways; the
one you use depends on whether you know the MIB number of the
entity to be modified.

 lf you know the entity's MIB number, use this form for
 entloc:

 Entld(i4expr)

 Replace i4expr with an integer expression for the MIB
 number. You may find the MIB number by using the Verify

4-158 UPL Revision 6.0

Statements and Intrinsics

statement or by using intrinsic functions. Some intrinsics, such
as GetEnt, allow the user to digitize entities in the graphics
window. Their MIB numbers are then available to the
program. Other functions, such as FindProp and TagMib, will
return an MIB number when given non-graphical information
such as the entity's properties or tags. lt is recommended that
the MIB number be obtained before using the Modify
statement.

lf you do not know the entity's MIB number, you may use one
of the following keywords for entloc:

 First

Modifies the first entity in the database. This will initialize the
database search.

Next
Modifies the next entity in the database. This keyword allows
the program to step through the database sequentially and
modify each entity. Each time a Modify Next statement is
executed, the next entity in the database with the matching
enttype is modified. If no enttype is given, any entity is
matched. A Modify Next statement may also be used after an
Entld(i4expr) statement. The database search will then start at
the i4expr entity instead of the first entity.

Last Modifies the last entity in the database. This keyword
allows the program to modify the last entity inserted into the
database without searching the database from the beginning.

lf the type of entity specified by the enttype keyword does not match the
type found using the entloc keyword, the DBStatus variable is set to three.
When the end of the database is reached, DBStatus is set to two. See
Appendix B, "System Variables," for more information.

entatts: Optional keywords that let you change the data of an entity.
 You can use the following entatts keywords with all entity
 types:

 Color(iexpr)

 where iexpr gives the new color number for the modified
 entity.

4-159 Statements and Intrinsics

Statements and Intrinsics

Font(iexpr) where iexpr gives the new font number for the
modified entity.

Group(iexpr) where iexpr gives the modified group number of
inserted entity.

 Layer(iexpr) where iexpr gives the layer for the modified
entity.

Vvis(iexpr) where iexpr gives the new view number that the
modified entity is visible in,

entdata: Optional keywords that provide the data to be modified for a
 specified enttype. The keywords for each enttype are:
For Lines:
 Ends(cexpr1, cexpr2)
 Specify the endpoint coordinates after the keyword Ends.
 Replace cexpr1 with end one and cexpr2 with end two of the
 line. Both are coordinate expressions which represent model
 space coordinates. The default for cexpr1 and cexpr2 is
 [0.0,0.0,0.0].
For Strings:
 Verts(iexpr1, carray(iexpr2))
 Specify the coordinates for the vertices of a string in carray.
 Replace carray with the name of a coordinate array which
 contains the model space coordinates for the string vertices.
 Replace iexpr1 with the number of vertices in carray, and
 iexpr2 with the first element of carray to be used.
For Arcs:

Specify what you want to change after one of the following keywords:

Org(cexpr) Replace cexpr with the new model space origin of
the modified arc.

 Radius(rexpr)

Replace rexpr with the new radius of the arc. Arcs are drawn
counterclockwise.

4-160 UPL Revision 6.0

Statements and Intrinsics

AB(rexpr)Replace rexpr with the new beginning angle of the
modified arc in degrees.

AE(rexpr) Replace rexpr with the new ending angle of the
modified arc in degrees.

 ArcEnds(cexpr1, cexpr2)

If this keyword is given, it replaces AB and AE. Either AB and
AE or ArcEnds determine the beginning and ending angles of
the arc. The arc is drawn such that a line from the origin (as
specified by Org) to cexprl determines the beginning angle of
the arc, and a line from the origin (as specified by Org) to
cexpr2 determines the ending angle of the arc. The arc has a
radius specified by Radius above. There is no default for
ArcEnds; values for AB and AE are used to find the default
beginning and ending angles of the arc.

For Text:

Specify the new characteristics of the text to be modified after one of the
following keywords:

 Ang(rexpr)

 Replace rexpr with the new angle for the text.

 Hgt(rexpr)

 Replace rexpr with the new text character height.

 Just(iexpr)

 Replace iexpr with the new text i ustification code:
 1 - left justification
 2 - right justification
 3 - center j ustification

 Lnsp(rexpr)

 Replace rexpr with the new text line spacing factor.

 Org(cexpr)
 Replace cexpr with the new text origin in model space.

Txt(sexpr)

Replace sexpr with a string expression that gives the new text.

4-161 Statements and Intrinsics

Statements and Intrinsics

 Wdt(rexpr)

 Replace rexpr with the new text character width.

For Points:

Loc(cexpr)

Replace cexpr with the new model space coordinate of the
point to be modified.

For all entity types:

 Rpnt(bexpr)

Optional clause. Replace bexpr with the Boolean expression

after the keyword Rpnt. lf bexpr evaluates to true, then the
entity is repainted after it is modified. Otherwise, it is not.

Example

MODIFY LINE ENDS(C1,C2) ENT ID(MIB NUM) COLOR(IC)\
RPNT(TRUE)

4-162 UPL Revision 6.0

Statements and Intrinsics

ModR

Type

Intrinsic Function Arithmetic

Purpose

Returns the modulo, (or remainder), of the num and divisor parameters. These
parameters must be real numbers; the function will also return a real number.

Syntax

ModR(num, divisor)

Parameters

num: Real expression (input)
 This specifies the input number, or dividend.
divisor: Real expression (input)
 This specifies the divisor for the input number.

4-163 Statements and Intrinsics

Statements and Intrinsics

Mouselnp

Type

Intrinsic Procedure User Interface

Purpose

Returns information about input from the pointing device. It may be called
in a loop to track mouse movements and check for presses to mouse
buttons. The procedure returns immediately after the call and does not
wait for input.

Syntax

Mouselnput(digchar, moved, locpix, locdev)

Parameters

digchar: Integer variable (input/output)
 Returns the ASCII value of the button(s) pressed on the input
 device. This is sent from the device driver back to Personal

Designer. A value of 1 indicates a button has been pushed.
All other values are device dependent.

moved Boolean variable (input/output)
 Returns a boolean value telling whether the mouse has
 moved from the coordinates specified in locpix.
locpix Integer array of 2 elements (input/output)
 On output, specifies the latest mouse position in pixel
 coordinates. This is clipped to the graphics device page
 coordinates, not the graphics window coordinates. See Chap-
 ter 3, Functional Listing, under Window Input/Output Intrinsics
 for more information.
locdev Integer4array of 2 elements (input/output)
 Returns the latest mouse position in input device coordinates.
 These depend upon the type of input device and its current

resolution settings. On input, if locdev(1) is <0, the system
uses the current rnouse position as the initial position. If you
set locdev to -1, this tells the system to start tracking the

mouse at its current position. On input, if locdev is not -1 (or

<0) then use the location specified by loedev as the mouse's
starting point.

4-164 UPL Revision 6.0

Statements and Intrinsics

MovEnt

Type

Intrinsic Procedure Database Access

Purpose

Moves a set of entities from one location to another. With MovEnt, only the
location changes. The graphics of the entity's previous location are erased.

Syntax

MovEnt(miblist(1), nent, deltaxyz(1))

Parameters

miblist: Integer4 array of nent elements (input/output)
 This parameter specifies the MIB numbers of the entities to
 be moved.
nent: Integer4 expression (input)
 This specifies the number of entities in miblist.
deltaxyz: Real array of 3 elements (input/output)
 This parameter specifies the amount to move the entity in
 each direction of X, Y and Z respectively. In a
 transformation matrix, these deltas are stored in elements 10,
 11, and 12.

4-165 Statements and Intrinsics

Statements and Intrinsics

MovEntCopy

Type

Intrinsic Procedure Database Access

Purpose

Copies a set of entities and moves it to a new location. The only difference
between the new entities and their copies is the location. The new entities are
added to the end of the database.

Syntax

MovEntCopy(miblist(1), nent, deltaxyz(1))

Parameters

miblist: Integer4 array of nent elernents (input/output)
 This parameter specifies the MIB numbers of the entities to
 be moved.
nent: Integer4 expression (input)
 This is the number of entities in miblist.
deltaxyz: Real array of 3 elements (input/output)
 This parameter specifies the amount to move the entity in
 each direction of X, Y and Z respectively. In a
 transfonnation matrix, these deltas are stored in elements 10,
 11 and 12.

4-166 UPL Revision 6.0

Statements and Intrinsics

NullTransform

Type

Intrinsic Procedure Geometric

Purpose

Returns the null transformation matrix. This function should be used to
initialize a transformation matrix before using the matrix in a UPL program.
The values returned by the procedure are:

The null transform values are:

1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0

The X, Y, Z offset values are:

0.0 0.0 0.0

The X, Y, Z scaling values are:

1.0 1.0 1.0

Syntax

NullTransform(transform(1))

Parameters

transform: Real array of 15 elements (input/output)
 This parameter returns the null transformation matrix to be
 initialized. After this procedure is executed, this matrix will
 contain the values listed above.

4-167 Statements and Intrinsics

Statements and Intrinsics

NumToCntrl

Type

Intrinsic Function Data Conversion

Purpose

Converts characters in the form #ascii num# to ASCII control characters and
returns the new string value. This is the same format used by Personal
Designer and the UPL compiler. See CntrIToNum for more inforrnation. For a
complete list of the ASCII character set, see Appendix F, "ASCII Character Set."

Syntax

NumToCntrl(str)

Parameters

str: String expression (input)
 This parameter specifies the string containing the character
 sequence #ascii num#. Characters that are not in this form
 are not changed.

4-168 UPL Revision 6.0

Statements and Intrinsics

Open

Type

Statement Input/Output

Purpose

Opens a file for reading and/or writing. lf the file you open does not exist, a
new file is created.
UPL has two kinds of files: text and binary. There are also two kinds of file
access: sequential and random. The default is a sequential access text
file.
lt is easier to create and verify data in a text file, so you should try to use
text files in most of your UPL programs. A text file may be examined or
created by any program or command capable of reading or writing a text
file; for example, a text editor. However, if the UPL programs will read and
write files for programs other than Personal Designer, you may have to
use binary files. This should allow your files to be compatible with the other
programs.
All files have afile pointer. This is the position in the file at which the next
Read or Write will occur. The file pointer is moved about differently for
sequential and random access files.

Syntax

Open flvar fn Binary Reclen(iexpr)

Keyword modifiers

flvar: File variable. See the File declaration statement for rnore
 information.
fn: String expression which gives the name of the file to be
 opened.
Binary: Optional keyword. Specifies the kind of file to be opened.

If you do not use the Binary keyword, the file will be a text
file. A text file is made up of ASCII characters. These
characters are the ASCII representation of integer, real,
coordinate, Boolean, or string data.

4-169 Statements and Intrinsics

Statements and Intrinsics

Text files are divided into lines. The lines are separated by an
end-of-line sequence. For DOS these are the carriage return
(ASCII 13) and the line feed (ASCII 10) characters together.
On UNIX, it is just the line feed character (ASCII 10). Text
files may end with an end-of-file mark. On DOS, the
end-of-file mark is ^Z (ASCII 26); on UNIX, it is AD (ASCII 4).
Do not read or write these special characters as part of your
data: the Read and Write statements will do this for you. The
Read and Write statements will transfer data and
automatically convert data between the ASCII character
format in the file and the internal data storage format of the
variable. For more information, see the Read and Write
statements, Appendix F, "ASCII Character Set," and Appendix
E, "Internal Data Format."

Ifyou do use the Binary ke.yword, the file will be a binary file.
A binary file is made up of data in the internal storage format
for integer, real, string, Boolean, and string data. There is no
line separation in a binary file. lt is just a series of bytes. The
Read and Write statements merely transfer the appropriate
number of bytes between the file and the program's variables.

Reclen: Optional keyword. Specifies the method of file access.

Ifyou do not use the Reclen keyword, the program will use
sequential access. Sequential access starts at the beginning
of the file and reads or writes data at the file pointer. The file
pointer is then advanced. The file pointer cannot move
backward. lt may, however, be set to the beginning of the file.
This can only be done by closing the file and opening it again.
For more information see the Close statement.

If you do use the Reclen keyword, the file will use random
access. A random access file may position the file pointer to
the beginning of any record within the file. Setting the file
variable's POSITION attribute sets the file pointer. The file
pointer may be moved to a position within a record using the
Read statement.

4-170 UPL Revision 6.0

Statements and Intrinsics

The record length is also set by the Reclen keyword . lt may
be checked using the file variable's.RECLEN attribute.
Replace iexpr with an integer expression for the record
length in bytes. In text files, the record length must include
the end-of-line sequence. Thus, add 2 to the record length
when running under DOS; add 1 to the record length when
running under UNIX. Reclen only affects how much the file
pointer is moved; it does not affect how much data is read.

The file pointer may also moved using the POS4 attribute.
Setting this 4-byte integer value moves the file pointer to the
specified offset from the beginning of the file. lt is not
effected by the POSITION attribute or the record length
specified in the Reclen keyword.

At most, UPL can have four files open at one time. lf UNDO is on, or if a
journal file is on, this is reduced to three. In addition, some Personal
Designer commands such as PLOT, EXEC, INSERT TFILE, and
INSERT FIGURE require a file to execute. lf you have used all available
files and invoke one of these commands using the Send statement, your
files may be damaged. These restrictions exist because DOS limits the
number of files that can be open to 20, and Personal Designer uses 16
of these.

Examples

OPEN F1 FNAME BINARY RECLEN(32)

Open Txt "\DATA\PROPERTY.DAT"

string FileName:60
file FileVar
 :
 :
accept FileName prompt("Enter name of file: ")
open FileVar FileName

4-171 Statements and Intrinsics

Statements and Intrinsics

Pagelnfo

Type

Intrinsic Procedure Operating System

Purpose

Returns information about the graphics display device. For more
information, see "Input/Output (Window) Intrinsics in the Functional
Listing of Statements and Intrinsics chapter.

Syntax

Pagelnfo(infono, pageno, pagedata(1))

Parameters

infono: Integer expression (input)
 This parameter speeifies the information to return about the
 graphics driver. The four input values are:

 1 page type.
 2 pixel width of characters.
 3 pixel height of characters.
 4 page size in pixels.

pageno: Integer expression (input)
 This parameter speeifies the graphics device page to query.
 Values are:

 1-6 These query pages 1-6. If the graphics device
 does not support a page, pagedata returns a zero.
 -1 Returns information about the page containing the
 window most recently accessed by the Accept,
 Display, Print, or Send statements.
 -2 Returns information about the page containing the
 graphics window.

pagedata: Integer array of 4 elements (input/output)
 This parameter returns the page inforniation:

4-172 UPL Revision 6.0

Statements and Intrinsics

lf infono = 1, pagedata(1) contains integer code telling what
kind of information is on the page:

0 invalid page
1 alpha/text only
2 graphics only
3 alpha/text and graphics

lf infono = 2, pagedata(1) holds the pixel width (X direction)
for each character in alpha/text.

lf infono = 3, pagedata(1) holds pixel height (Y direction) for
each character in alpha/text

lf infono = 4, pagedata(4) holds pixel coordinates of corners of
the graphics device page:

pagedata(1) X coordinate of lower left corner

pagedata(2) Y coordinate of lower left corner

pagedata(3) X coordinate of upper right corner

pagedata(4) Y coordinate of upper right corner

4-173 Statements and Intrinsics

Statements and Intrinsics

Pi

Type

Intrinsic Function Trigonometric

Purpose

Returns the real value equal to 3.141593.

Syntax

Pi()

Parameters

The Pi function has no parameters.

4-174 UPL Revision 6.0

Statements and Intrinsics

PixToRowCol

Type

Intrinsic Procedure Input/Output (Window)

Purpose

Converts pixel coordinates to the corresponding row and column coordinates.
This procedure can be used with DerineAW to convert the dimensions of your
alphanumeric window. See RowColToPix for more information. For more
information, see "Input/Output (Window) Intrinsics in the Functional Listing of
Statements and Intrinsics chapter.

Syntax

PixToRowCol(ixy(1), ipage)

Parameters

ixy: Integer array of 4 elements (input/output)
 On input, this parameter specifies the two X, Y pixel
 locations. On output, it returns the equivalent row/column
 position.
 This parameter ean be used to represent the lower left and
 upper right corners of a window in the DerineAW procedure:

 ixy(1) Left boundary.

 ixy(2) Lower boundary.

 ixy(3) Right boundary.

 ixy(4) Upper boundary.

ipage: Integer expression (input)
 This parameter specifies the graphies device page number
 for the conversion.

4-175 Statements and Intrinsics

Statements and Intrinsics

PntPrp

Type

Intrinsic Procedure Geometric

Purpose

Returns the projection of a point onto a line. lt returns the intersecting point of
the two imaginary lines. The first line passes through two points in space. The
second line starts at a given point in space and intersects the first line so that
the two lines are truly perpendicular. This point of intersection is the projection
of the given point on the given line. All points must be given using the same
coordinate system.

Syntax

PntPrp(lend1, lend2, pnt, prppnt)

Parameters

lend1: Coordinate expression (input)
 This parameter specifies one end of the first line.
lend2: Coordinate expression (input)
 This parameter specifies the other end of the first line.
pnt: Coordinate expression (input)
 This parameter specifies the point to project onto the line
 specified by lend1 and lend2.

prppnt: Coordinate variable (input/output)

 This parameter returns the projection of pnt onto the line

 specified by lend1 and lend2.

4-176 UPL Revision 6.0

Statements and Intrinsics

PntPrpV

Type

Intrinsic Procedure Geometric

Purpose

Returns the projection of a point onto a line in a given view. lt returns the
point of intersection of two imaginary lines seen as perpendicular in the
given view. The first line passes through two points in space. The second
line starts at a given point in space and interseets with the first line so that
the two lines appear to be perpendicular when seen from the given view.
This point of intersection is the projection of the point on a line in the given
view.
The lines in this procedure may only appear to be perpendicular, whereas
the lines in the PntPrp procedure are actually perpendicular. All points in
space are given in mode] coordinates.

Syntax

PntPrpV(viewno, lend1, lend2, pnt, prppnt)

Parameters

viewno: Integer expression (input)

 This parameter specifies the view number in which the pnt
 parameter appears to be projected.
lend1: Coordinate expression (input)
 This parameter specifies one end of the first line.
lend2: Coordinate expression (input)
 This parameter specifies the other end of the first line.
pnt: Coordinate expression (input)
 This parameter specifies the point to project in the given
 view.
prppnt: Coordinate variable (input/output)
 This parameter returns the projeetion of pnt onto the line
 given by lend1 and lend2 as it appears in the given view.

4-177 Statements and Intrinsics

Statements and Intrinsics

PolyArea

Type

Intrinsic Procedure Geometric

Purpose

Calculates the area of a polygon given by the vertices parameter. The polygon
can be open or closed.

Syntax

PolyArea(vertices(1), nvert, area)

Parameters

vertices: Coordinate array of nvert elements (input/output)
 This parameter specifies the vertices of the polygon. lf the
 polygon is not closed, the line between the first and last
 vertex will act as the closing side.
nvert: Integer expression (input)
 This parameter specifies the number of vertiees in the
 vertices parameter.

area: Real variable (input/output)
 This returns the area of the polygon in squared database
 units.

4-178 UPL Revision 6.0

Statements and Intrinsics

Polywin

Type

Intrinsic Procedure Geometric

Purpose

Determines if a point lies within the boundaries of a polygon. The point and the
polygon must exist in the same plane.

Syntax

PolyWin(vertices(1), nver, pnttocheck, pntin)

Parameters

vertices: Coordinate array of nvert elements (input/output)
 This parameter specifies the vertices of a polygon. A
 maximum of 1.000 vertices may be specified.
nvert: Integer expression (input)
 This parameter specifies the number of vertices in the
 vertices Parameter.

pnttocheck: Coordinate expression (input)
 This parameter specifies the point to check.
pntin: Boolean variable (input/output)

 This parameter returns true if pnttocheck is bounded by the
 polygon; otherwise it returns false. If a point is on a
 boundary defined by the vertices, or is the same as a vertex,
 pntin returns true.

4-179 Statements and Intrinsics

Statements and Intrinsics

Print

Type

Statement Input/Output (Window)

Purpose

Prints numerical or string expressions to a window on the screen.

Syntax

Print expr :f1:f2 expr:f1:f2...,

Keyword modifiers

expr: Optional expression. Replace expr with any resulting data type
except file. After the expression is evaluated, the result is printed at
the current cursor location in the Print window. This is the Personal
Designer command window by default. To change the window use
the PrintWin system variable to specify the window number. For
more information, refer to DefineAW and Appendix B, "System
Variables."

f1: Optional expression that can be used with expr. This lets you
format the output of the expression by indicating the field width.
Replace f1 with the field width the expr value is to be printed in.
The expression is printed rightjustified if the field width is positive
and left justified if the field width is negative. Always choose a field
width that will accommodate the length of the longest expression to
be printed. lf you try to print an expression that is longer than the
given field width, the expression is truncated on the right. lf no field
width is given, the statement uses any field width that is necessary
to print the value.

f2: Opüonal expression that can be used with f1 to format the decimal

spacing for real and coordinate values. Replace f2 with the number
of places to the right of the decimal point. The decimal point uses
one decimal place. If f2 is negative, the number is printed in
exponential

4-180 UPL Revision 6.0

Statements and Intrinsics

form. Note that trailing zeros will be added to fill out the field if
the value can be exactly expressed in fewer decimal places
than specified by f2. If the number cannot be expressed in

exactly f2 decimal places, it will be rounded up. The default
value is to print all significant digits and one trailing zero.
Optional punctuation. lf the last item in the Print statement is a
comma, the cursor is left at the end of the current line. (i.e. no
end-of-line sequence is printed.) Otherwise, it is moved to the
beginning of a new line. An empty (no expression) Print
statement moves the cursor to the beginning of a new line.

Examples

PRINT 'Select Option ':30,

PRINT A/(3.0+B):12:2, 'A string', B1 OR B2:10

4-181 Statements and Intrinsics

Statements and Intrinsics

Proc

Type

Statement Program Structure

Purpose

Declares the name of a user-defined procedure, as well as the name, data,
aggregate, and storage types of the parameters. All statements between the
Proc and End Proc keywords form the body of the procedure.

Syntax

Proc procname(parameterlist)

Keyword modifiers

procname: Declares the name of the user-defined procedure. Only the
 first 16 characters are used. Using procname as a statement
 in the program causes the procedure to be called. Variables
 or expressions enclosed in parentheses after the procedure
 call will be passed as parameters. See Chapter 2, Program
 Structure, for more inforrnation.
parameterlist: Contains parameter declarations. Any number of parameters
 may be declared, but they must be enclosed in parentheses if
 they exist. lf there are no parameters, do not include
 parentheses. Parameter deelarations are equivalent to
 variable deelarations inside a procedure: their names are
 local to the procedure. However, parameter names may not
 be the same as any variables declared in the Group section.
 A parameter list takes the form of
 mode datatype paramname.

 mode
 Parameter mode. lt must be either In for input parameters or
 InOut for input/output parameters. The Initial default mode
 is input. The default mode becomes the most recently used
 mode thereafter.

 paramname
 Name of the parameter. Onty the first 16 characters will be
 used.

4-182 UPL Revision 6.0

Statements and Intrinsics

 datatype:
Data type of the parameten lt may be any of the UPL
data types: Integer, Integer4, Real, Coord, String,
Boolean, or File. There is no initial default data type, but,
the most recently used data type becomes the default
after the first parameter is declared.

Arrays may only be passed as input/output parameters.
The array parameter's declaration must include the
maximum subscripts enclosed in parentheses.

lf a string parameter is declared as input, the maximum
length must be given, preceded by a colon. If a string
parameter is declared as input/output, the maximum
length used is the maximum length of the string variable
passed as a parameter to the procedure.

There are shortcuts for declaring parameters. If the
mode and data type of the parameters has not changed,
they may simply be separated by commas. If either the
mode or data type changes, do the following:

 1. separate the declarations with a ; or start a new line

2. list the new mode and data type if the mode changes
or list the new data type only if the data type changes.

 3. list the new parameter names separated by commas.

Example

For more information, see Chapter 2, Program Structure, and
Appendix E, "Internal Data Storage Format."

4-183 Statements and Intrinsics

Statements and Intrinsics

Process

Type

Statement Flow Control

Purpose

Allows other UPL programs to be executed inside a running UPL
program.
When a Process statement is encountered, the flow of control passes
from your program to another program. After this program is executed,
the flow of control returns to your program and continues execution on
the staternent immediately following the Process statement.
Data may be passed from the calling program to the called program with
variables which are declared identically in the Group section of each
program. These variables must be declared in the exact same order in
each program. The offset of each shared variable from the beginning of
the Group seetion must be the same. The offset is determined by the
variable's data type and the order it is deelared. See the Group
statement and Appendix E, "Internal Data Format," for more information.
lf the new program uses more code than your current program, use
$CodeSize to allocate enough memory for the new program. Note this
directive is only effective if either program is larger than the default value
set by the configurator.

Syntax

Process sexpr

Keyword modifiers

sexpr: Name of the UCD file to be executed. The UCD extension is

automatically appended to the end of sexpr to complete the file
name.

Examples

PROCESS "LESSON1"

PROCESS "MENU"+OPTION

4-184 UPL Revision 6.0

Statements and Intrinsics

Product

Type

Intrinsic Procedure Operating System

Purpose

Returns information about the software that is running the UPL program. The
type of information returned includes product identification number, product
version number, version number, and graphics device identification.

Syntax

Product(proddata(1))

Parameters

proddata: Integer array of 19 elements (input/output)
 The list below shows the information proddata returns about
 the software.

 proddata(1) Product id code. If proddata(1) = 1 the
 software running the UPL program is
 Personal Designer.

If proddata(1) =2 The software running the UPL
program is microDraft.

 proddata(2) Personal Designer version number (500
 means version 5.00).

 proddata(3) Database version.

 proddata(4) Graphics device driver id number.

 proddata(5) Graphics device driver version number.

 proddata(6) Graphics device driver size in bytes

 proddata(7) Input device driver id number.

 proddata(8) Input device driver version number.

 proddata(9) Input device driver size in bytes.

4-185 Statements and Intrinsics

Statements and Intrinsics

 proddata(10) Plot device driver id number.

 proddata(11) Plot device driver version number.

 proddata(12) Plot device driver size in bytes.

 proddata(13) current UPL program version number (i.e., the
version of the UPL compiler that compiled the
program).

 proddata(14) UPL interpreter version nurnber

 proddata(15) Operating System flag
 1 =DOS
 2 = DOS Extender
 3 = UNIX
 proddata(16) CPU architecture flag
 1 = SPARC
 2 = Intel
 proddata(17) productusage
 1 = demo
 2 = production
 proddata(18) Surfacing flag.
 0 = not installed
 1 = installed
 proddata(19) Machining flag.
 0 = not installed
 1 = installed

4-186 UPL Revision 6.0

Statements and Intrinsics

PutCur

Type

Intrinsic Procedure Input/Output (Window)

Purpose

Puts the cursor in a specified row and column relative to the upper left corner of
a window.

Syntax

PutCur(iwin, row, col)

Parameters

iwin: Integer expression (input)
 This parameter specifies the window number to position the
 cursor in.
row: Integer expression (input)

 This parameter specifies the row number in iwin to put the
 cursor. lf row is zero, the cursor's row position does not
 change.
col: Integer expression (input)

 This parameter specifies the column number in iwin to put
 the cursor. If col is zero, the cursor's column position does
 notchange.

4-187 Statements and Intrinsics

Statements and Intrinsics

RadDeg

Type

Intrinsic Function Data Conversion

Purpose

Converts a real expression from radians to degrees. This function returns a real
value.

Syntax

RadDeg(rexpr)

Parameters

rexpr: Real expression (input)
 This parameter specifies the real expression to convert.

4-188 UPL Revision 6.0

Statements and Intrinsics

Read

Type

Statement Input/Output

Purpose

Transfers data from a file to a variable in the program. The file must be opened
with the Open statement.
Each Read operation is done in 3 steps:
1. Data is scanned from the file starting at the file pointer.
2. Data is interpreted and placed in the specified variables.
3. The file pointer is advanced to point to new data.
These steps are performed differently depending on the type of file, the data
type of the variables, and the way the statements syntax is used.

Syntax

Read flvar, var:iexpr,var:iexpr,

Keyword modifiers

flvar: File variable that must have been opened using the Open
 statement. The file may have been opened as a text or binary
 file, and may use sequential or random access. See the Open
 statement for more information.
var: Optional expression. Replace var with a variable of any data
 type except file. It must be a variable, variable attribute, or
 array element. The var expressions must be separated by
 commas.
 If the file is a text file, characters are scanned starting at the
 file pointer. The Read statement scans until it encounters a
 character which could not be in the text representation for
 var. See Appendix E, "Intemal Data Storage Format," for
 more information. The Read statement then converts these

4-189 Statements and Intrinsics

Statements and Intrinsics

characters to the equivalent value in var's data type and stores
that value in var. The file pointer is then advanced to the next
unscanned character. This process repeats for the next variable
in the statement. After all variables in the statement have been
read, the file pointer advances to the beginning of the next line.
lt ignores any data left on that line.

iexpr: Optional integer expression, to be used with var, that allows
 you to alternately specify how many characters to scan and
 convert. The iexpr expression allows you to set up a format
 in your text file. For example, you could read a file of
 numbers arranged in columns.

 Replace iexpr with a field width which is the number of

 characters you want to scan, convert, and store in var. if

 iexpr is specified, but the Read statement encounters a

 character which would not convert to var's data type, it stops
 scanning and convert the value there. A colon must precede
 iexpr.

 Optional punctuation. If you want to leave the file pointer
 within a line, put a comma at the end of the Read statement.
 lt leaves the file pointer just after the character last scanned.
 When the file pointer has reached the end of the line, the file
 attribute flvar.EOLN is set to true; the file pointer does not
 advance further. Any subsequent Read statement ending
 with a comma does not advance the file pointer. Any
 subsequent Read statement without a comma moves the file
 pointer to the beginning of the next line. For example, a
 statement of the form "READ flvar" moves the file pointer
 to the beginning of the next line and does not scan any
 characters.

If the Read statement tries to scan more variables than there is data on
the line, the remaining variables receive default values as follows:

4-190 UPL Revision 6.0

Statements and Intrinsics

 Data Type Default Value

 REAL 0.0
 INTEGER 0
 COORD [0.0,0.0,0.0]
 BOOLEAN FALSE
 STRING "" (empty string)

If the file is a binary file, the Read statement scans and interprets the
values in the file as being in the internal data storage format for binary
data. See Appendix E, "Internal Data Format," for more information. No
data type conversion is done. Each variable is given the value in the file
starting at the file pointer and contained in the subsequent bytes. The
number of bytes scanned depends on the variable's data type and its
internal data storage format. The file pointer is then advanced to the next
unscanned byte.

The field width iexpr and the comma at the end of the Read statement
have no significance with binary files.

If random file access is used, the file pointer may also be repositioned
using the flvar.POSITION or flvar.POS4 attribute. See the Open
statement or Appendix B, "System Variables," for more information.

4-191 Statements and Intrinsics

Statements and Intrinsics

Examples

proc main

integer i1, i2, i3, i4
integer iarr1(10), iarr2(10), iarr3(10), iarr4(I0)
string s1:16, s2:20, s3:20, s4:20
rea1 r1, r2, r3, r4, x1, x2, x3, x4
coord c1, c2, c3, c4
boolean b1, b2, b3, b4
 :
 :
open datafl filename
 :
read datafl, i1, s1, r1, c1, iarr1(5), b1, x1
 :
read datafl, i2, s2:16, r2, c2, iarr2(5):3, x2, b2
 :
read datafl, i3, s3, r3, c3, iarr3(5), x3, b3
 :
read datafl, i4:5, s4:20, r4:10, c4:15, iarr4(5):5, \

x4:5, b4:1
 :
end proc

lf the file contained the following data (an underscore _ denotes a blank and
the <CR><LF> denotes the end of line sequence):

33This_is_a_string12345.6[3.0,4.0,5.5]435T2.2<CR><L F>
33This_is_a_string12345.6[3.0,4.0,5.514352.2F<CR><L F>
33This_is_a_string12345.6[3.0,4.0,5.5]4352.2F<CR><L F>
33___This_is_a_string____12345.6___[3.0,4.0,5.51__4
35__2.2__F<CR><LF>

The first Read statement would produce the following results:

i1 = 33, s1 = 'This_is_a_string', r1 = 12345.6,
c1 = [3.0,4.0,5.51 iarr1(5) = 435, b1 = TRUE,
x1 = 2.2

In each case the characters in the data file imply a boundary between the
variables' data. When the Read statement sees the "T"' it knows it must stop
scanning characters for an integer. Note that the declared length of the string
variable tells it when to stop scanning.

4-192 UPL Revision 6.0

Statements and Intrinsics

The second Read statement shows how an optional field width can help
clarify the implied boundaries. This is necessary for data following strings. lt
is also necessary when integer and real data are adjacent to each other. In
this example, variables s2 and j2 need a field width,

i2 = 33, s2 = 'This_is_a_string, , r2 = 12345.6,
c2 = [3.0,4.0,5.5], iarr2(5) = 435, x2 = 2.2,
b2 = FALSE

The third Read statement shows what would happen without the field widths
to clarify the boundaries. This is probably not what is wanted.

i3 = 33, s3 = 'This_is_a_string1234' , r3 = 5.6,
c3 = [3.0,4.0,5.5), iarr3(5) = 4352, x3 = 0.0,
b3 = FALSE

The fourth READ statement uses a field width for each of the variables.
Since trailing blanks are ignored for all but string data, they may be used to
pad out the fields of data. This would be the way to read data arranged in
columns.

i4 = 33, s4 = 'This_is_a_string____' ,
r4 = 12345.6, c4 = [3.0,4.0,5.5], iarr4(5) = 435,
x4 = 2.2, b4 = FALSE

proc main
 :
integer a, b, c1 d, e
integer v, w, x, y, z, final
 :
open dfile datafile
 :
read dfile, a, b, c, d, e
read dfile, v,
read dfile
read dfile, w, x,y,

Read

read dfile, z
read dfile, final
read dfile
 :
end proc

4-193 Statements and Intrinsics

Statements and Intrinsics

If the file contained the following data:

5_10_15<CR><LF>
20_25<CR><LF>
30_35<CR><LF>
40<CR><LF>
<CR><LF>
<EOF>

The first READ yields the following: a = 5, b = 10, c = 15, d = 0, e = 0.
The second READ makes v = 20 and leaves the file pointer between the
20 and the 25 on the second line. The third READ moves the file pointer
to the beginning of the third line. The fourth READ makes w = 30, x =35,
y = 0, and sets dfile.EOLN to true. The fifth READ makes z = 0 and
moves the file pointer to the beginning of the next line. The sixth READ
makes final = 40 and moves the file pointer to the beginning of the last
line. The last READ would skip the empty line and set dfile.EOF to true.

4-194 UPL Revision 6.0

Statements and Intrinsics

ReadCArray, ReadlArray, ReadRArray

Type

Intrinsic Procedure Input/Output (Window)

Purpose

Allows fast retrieval of integer, real, or coordinate data from a binary file.
lt is also useful for programs which need more than 32,767 bytes of data,
the maximum amount which can be declared in a UPL program.
Your program may store large amounts of data in a file. This routine can
be used to read the data into a buffer array, and then access and modify
the data. The program can then write the data back to the file using the
WriteCArray, WritelArray, and WriteRArray intrinsic procedures.

Syntax

ReadCArray(file, array(1))

ReadIArray(file, array(1))

ReadRArray(file, array(1))

Parameters

file: File variable (input/output)
 This parameter is the file variable for the data file. See the
 Open statement for more information on file IO. The file
 must be opened as a binary file. Sequential or random file
 access may be used. It is suggested that you read files
 written by the WriteCArray, WritelArray, and
 WriteRArray intrinsic procedures, as using these
 procedures with other files is complicated.
array: Coordinate, integer, or real array of any length (input/output)
 This parameter specifies the array which the program reads
 the data into. lt should be declared to be large enough to hold
 all the data to read in one call to ReadCArray, ReadlArray,
 and ReadRArray. The amount of data read is determined by
 the number of elements declared in the array. Specifically,
 each call reads the number of bytes equal to the number of

4-195 Statements and Intrinsics

Statements and Intrinsics

elements in the array multiplied by the number of bytes per
element. lt must always be passed with a subscript of one, for
example: array(1).

The program starts reading data at the file pointer and puts it into array.
The file pointer is then placed immediately after the last byte read.

lf you are using random file access, the file pointer may point to any
array in the file. This is done by setting the file.POSITION or file.POS4
attribute.

Setting the file. POSITION attribute moves the file pointer to the position
which equals the value of the file.POSITION attribute multiplied by the
value of the file.RECLEN attribute. That is, the file.POSITION attribute
tells the program what file record to point to. The file.RECLEN attribute
specifies how many bytes are in the record.

lf your program is reading a file whose arrays are all of the same size
and data type, simply declare your record length to be the size of that
array in bytes. This is done in the Open statement. Repositioning the file
pointer is then simply a matter of setting file.POSITION to the array you
want.

Setting thefile.POS4 attribute, places the file pointer at the given byte
offset from the beginning of the file. (It is not effected by the
file.POSITION or file.RECLEN attributes.)

If you are mixing arrays of different data types in the same file, you may
find it easier to set the record length to 1 (using Reclen keyword in
Open statement) and use the file.POS4 attribute.

When calculating file.POS4, take into account the difference in array
element sizes. That is, a real element takes up as much as two integer
elements and, a coordinate element takes six times as much as an
integer element.

Since the file.POSITION attribute is itself an integer value, it can only be
set as high as 32,767 bytes. Files are therefore limited to 32,767 *
file.RECLEN bytes. If you want to read a larger file, use the file.POS4
attribute which will allow a byte offset of up to 2,147,483,647.

4-196 UPL Revision 6.0

Statements and Intrinsics

Examples

--
-- RRArray.upl
-- This program demonstrates use of ReadRArray.
-- The use of ReadIArray and ReadCArray are very
-- similar.
-- See WriteCArray, WriteIArray, WriteRArray for
-- the program WRArray.upl that will create an
-- appropriate file.
--
Proc Main

integer I
integer SavePos
real RealBuffer(100)
file DataFile

-- Open the data file with the length of the
-- data record: 400 = (4 bytes per real) * 100)

open DataFile, 'File.Dat' binary reclen(400)

-- Position the file pointer to some record
-- in the file, say #25 and read it and print it.

DataFile.POSITION = 25

ReadRArray(DataFile, RealBuffer(1))

loop I = 1 to RealBuffer(1).SIZE
 print RealBuffer(I),' ',
end loop

end proc

4-197 Statements and Intrinsics

Statements and Intrinsics

--
-- RXArray.upl
-- This program demonstrates use of ReadCArray,
-- ReadIArray, ReadRArray. It reads a file with
-- blocks of 1000 integers, 500 reals and 200
-- coord data in the same file. A 12 byte header
-- points to the beginning of each section. The
-- program uses the POS4 attribute for
-- positioning the file pointer. See WriteCArray,
-- WriteIArray, WriteRArray for the program
-- WXArray.upl which writes the data file.
--
proc main

integer IntegerSize = 2
integer RealSize = 4
integer CoordSize = 12
integer HeaderSize = 12

-- Header information
integer4 StartIntegerData
integer4 StartRealData
integer4 StartCoordData

-- Data buffers
integer IntegerBuffer(100)
real RealBuffer(50)
coord CoordBuffer(20)

integer I
integer4 DataOffset
file DataFile

-- start of code –

open DataFile,'Data.fil' binary reclen(1)

-- Read in values for header.
-- Reset file pointer to beginning of file.

DataFile.POS4 = 0
read DataFile, StartIntegerData, StartRealData, \

StartCoordData

-- Read in a buffer full random integer values
-- starting after integer value 47.
-- Print them out.

4-198 UPL Revision 6.0

Statements and Intrinsics

DataOffset = 47 * integer4(IntegerSize)
DataFile.POS4 = StartIntegerData + DataOffset

ReadIArray(DataFile, IntegerBuffer(1»

print 'IntegerBuffer='
loop I = 1 to IntegerBuffer(1).SIZE
 print IntegerBuffer(I),' ',
end loop
print

-- Read in a buffer full random real values
-- starting after real value 150.
-- Print them out.

Dataoffset = 150 * integer4(RealSize)
DataFile.POS4 = StartRealData + DataOffset

ReadRArray(DataFile, RealBuffer(1))

print 'RealBuffer='
loop I = 1 to RealBuffer(1).SIZE
 print RealBuffer(I),' ',
end loop
print

-- Read in a buffer full random coord values
-- starting after coord value 10.

Dataoffset = 10 * integer4(CoordSize)
DataFile.POS4 = StartCoordData + DataOffset

ReadCArray(DataFile, CoordBuffer(1))

print 'CoordBuffer='
loop I = 1 to CoordBuffer(1).SIZE
 print CoordBuffer(I),' ',
end loop

close DataFile

end proc

4-199 Statements and Intrinsics

Statements and Intrinsics

Real

Type

Statement Declaration

Purpose

Declares the name, data type, aggregate type, and initial value of a real
variable. An initial value is optional. Array variables must be declared
with their maximum subscripts.
Variables of real data type contain real number values in the ranges
-1.0E+38 to -1.0E-37, 1.0E-37 to 1.0E+38, and 0.0.

Syntax

Real rvar = rconst | rarray(iconst,...),...

Keyword modifiers

rvar: Name of the real variable. Only the first 16 characters are
 used.
rconst: Optional literal or named real constant. This is the initial
 value for a scalar variable. lf the variable is declared in the
 Group section, it will be set to this value once at the
 beginning of the program. If the variable is declared in a
 procedure or function, it will be set to this value each time
 the procedure or function is called.
rarray: Name of the real array variable. Only the first 16 characters
 are used.
iconst: Array subscripts. These declare the variable to have
 aggregate type array. Up to five subscripts may be declared.
 The subscripts must be enclosed in parentheses. Arrays may
 not be given an initial value.

All declaration statements must occur after the Proc, Func, and Group
statements. They must appear before any other type of statements inside a
procedure or function and are the only statements allowed inside the Group
section.

4-200 UPL Revision 6.0

Statements and Intrinsics

For more information, see Chapter 2, Program Structure, and Appendix E,
"Internal Data Storage Forrnat."

Examples

Real X, Y, Z

Real Delta = 0.000001, Diameter, Radius, Offset

Real Values(10,20,30)

4-201 Statements and Intrinsics

Statements and Intrinsics

Real

Type

Intrinsic Function Data Conversion

Purpose

Converts a Boolean, integer, integer4 or string expression to a real expression
and returns the value. For Booleans, false = 0.0 and true = 1.0.

Syntax

Real(expr)

Parameters

expr. Boolean, integer, or string expression (input)
 This parameter specifies the Boolean, integer, integer4, or
 string expression to convert.

4-202 UPL Revision 6.0

Statements and Intrinsics

Return (for Functions)

Type

Statement Flow Control

Purpose

Returns a value and passes flow of controi back to the calling procedure or
function. The returned value may be used in an expression after control is
passed to the calling function or procedure. Execution continues in the same
statement the function call occurred in.

Syntax

Return expr

Keyword modifiers

expr: Replace with an expression of the same data type as defined by the
Return keyword in the Func statement.

Examples

RETURN R

RETURN SQRT(X^2.0 + Y^2.0 + Z^2.0)

RETURN ANS = "Y" OR ANS = "y"

RETURN BOOL

4-203 Statements and Intrinsics

Statements and Intrinsics

Return (for Procedures)

Type

Statement Flow Control

Purpose

Returns control to the calling procedure or function from the current procedure.
Execution continues in the calling procedure on the line immediately following
the procedure call.

Syntax

Return When bexpr

Keyword modifiers

When bexpr. Optional expression. lf you use the optional When keyword, the

program returns only if bexpr evaluates to true. Otherwise
execution continues in the current procedure on the statement
immediately following this Return statement.

Examples

RETURN

RETURN WHEN I > 10 OR X = 0.0

4-204 UPL Revision 6.0

Statements and Intrinsics

RmvChr

Type

Intrinsic Function String Handling

Purpose

Removes all occurrences of the given characters from a string. This function
returns a new string without the characters.

Syntax

RmvChr(sexpr, setsexpr)

Parameters

Sexpr: String expression (input)
 This parameter specifies the string to remove the characters
 from.
Setsexpr: String expression (input)
 This parameter specifies the charaeters to remove.

Example

-- This example will print: A string of characters.

Print RmvChr("A &Str!ing $ of vcharxacters.", \
 "$vx!&")

4-205 Statements and Intrinsics

Statements and Intrinsics

Rnd

Type

Intrinsic Function Arithmetic

Purpose

Returns a random number between 0.0 and 1.0. This function returns a real
value.

Syntax

Rnd()

Parameters

The Rnd function has no parameters.

4-206 UPL Revision 6.0

Statements and Intrinsics

RotEnt

Type

Intrinsic Procedure Database Access

Purpose

Rotates the entities given using a transformation matrix. RotMat may be used
to create the transformation matrix.

Syntax

RotEnt(miblist(1), nent, transform(1))

Parameters

miblist: Integer4 array of nent elements (input/output)
 This parameter specifies the MIB numbers of the entities to
 be rotated.
nent: Integer4 expression (input)
 This parameter specifies the number of entities to be rotated.
transform: Real array of 15 elements (input/output)
 This parameter specifies the rotation of the entities. The first
 nine elements of the array are used to rotate the entities.
 Elements 10, 11, and 12 are the point about which the
 entities are rotated.

4-207 Statements and Intrinsics

Statements and Intrinsics

RotEntCopy

Type

Intrinsic Procedure Database Access

Purpose

Rotates a copy of the entities given using a transformation matrix. RotMat may
be used to create the transformation matrix. The copied entities are added to
the end of the database.

Syntax

RotEntCopy(miblist(1), nent, transform(1))

Parameters

miblist: Integer4 array of nent elements (input/output)
 This parameter specifies the MIB numbers of the entities to
 be rotated.
nent: Integer4 expression (input)
 This is the number of entities to be rotated.
transform: Real array of 15 elements (input/output)
 This parameter specifies the rotation of the entities. The first
 nine elements of the array are used to rotate the entities.
 Elements 10, 11, and 12 are the point about which the
 entities are rotated.

4-208 UPL Revision 6.0

Statements and Intrinsics

RotMat

Type

Intrinsic Procedure Geometric

Purpose

Returns a transformation matrix. This matrix describes the rotation about an
axis or vector. It describes the rotation only and not a point about which the
entities are rotated. RotMat can provide the rotational transformation matrix for
routines such as RotEnt, RotEntCopy, and RotPnt.

Syntax

RotMat(rotangle, rotvec, transform(1))

Parameters

rotangle: Real expression (input)
 This parameter specifies the angle of rotation in radians. The
 positive direction is counterclockwise while looking along
 the rotvec vector.

rotvec: Coordinate expression (input)
 This parameter specifies the vector to rotate about. You can
 define a vector from [0,0,0] to rotvec; or you can define it by
 subtracting the two coordinate values that represent points in
 space.
transform: Real array of 12 elements (input/output)
 This returns the transformation matrix that will give the
 rotation described by the rotangle and rotvec parameters.

4-209 Statements and Intrinsics

Statements and Intrinsics

RotPnt

Type

Intrinsic Procedure Geometric

Purpose

Rotates a set of points using a transformation matrix.

Syntax

RotPnt(transform(1), pnts(1), npnts)

Parameters

transform: Real array of 15 elements (input/output)
This parameter specifies the rotation of the points. The first nine
elements of the array are used to rotate the points. Elements 10,
11, and 12 are the location about which the points are rotated.
The RotMat procedure may be used to create the transforrn
array.

pnts: Coordinate array of npnts elements (input/output)
 On input, this parameter specifies the points to be rotated.
 On output, it returns the rotated points.
npnts: Integer expression (input)

 This parameter specifies the number of points in the pnts
 parameter.

4-210 UPL Revision 6.0

Statements and Intrinsics

RowColAW

Type

Intrinsic Procedure Input/Output (Window)

Purpose

Returns the size of an alphanumeric window as the number of rows and
columns in the window. For more information, see "Input/Output (Window)
Intrinsics" in the Functional Listing of Statements and Intrinsics chapter.

Syntax

RowColAW(iwin, irow, icol)

Parameters

iwin: Integer expression (input)
 This parameter specifies the alpha window number to query.
 If iwin is greater than zero, the current size is returned. This
 could be smaller than the defined size if other windows with
 a higher priority overlay iwin, or if the on-screen menus are
 on. These cases cause the window to shrink.
 lf iwin is less than zero, the maximum possible window size
 is returned.
irow: Integer variable (input/output)
 This parameter returns the number of rows in the window.
icol: Integer variable (input/output)
 This parameter retums the number of columns in the
 window.

4-211 Statements and Intrinsics

Statements and Intrinsics

RowColToPix

Type

Intrinsie Procedure Input/Output (Window)

Purpose

Converts row and column coordinates to the corresponding pixel
coordinates. This procedure can be used with the DerineAW procedure
to convert the dimensions of your alphanumeric window. See the the
PixToRowCol procedure and "Input/Output (Window) Intrinsics" in
"Functional Listing, " Chapter 3. for more information.

Syntax

RowColToPix(ixy(1), ipage)

Parameters

ixy: Integer array of 4 elements (input/output)
 On input, this parameter specifies two sets of row and
 column coordinates. On output, it returns the equivalent
 pixel coordinates.
 This parameter may represent the lower left and upper right
 corners of a window for the DerineAW procedure:

 ixy(1) Left boundary
 ixy(2) Lower boundary.
 ixy(3) Right boundary
 ixy(4) Upper boundary.

ipage: Integer expression (input)
 This specifies the graphics device page for the conversion.

4-212 UPL Revision 6.0

Statements and Intrinsics

RpntEnt

Type

Intrinsic Procedure Graphics

Purpose

Repaints entities on the graphics sereen. This procedure allows newly inserted
or modified entities to be displayed. To be repainted, the entity must be on a
layer or in a view of visibility which is selected on.

Syntax

RpntEnt(miblist(1), nent, error)

Parameters

miblist: Integer4 array of nent elements (input/output)
 This parameter specifies the MIB numbers of the entities to
 be repainted.
nent: Integer4 expression (input)
 This parameter specifies the number of entities in miblist. lf
 nent is zero, all visible entities in the part are repainted. lf

 you set nent to zero, you must give a dummy array with one

 element to the miblist parameter.

error: Integer variable (input/output)
 This parameter retums the error condition:

 0 no errors were found.

 < > 0 a database error was found.

4-213 Statements and Intrinsics

Statements and Intrinsics

SclEnt

Type

Intrinsic Procedure Database Access

Purpose

Scales a set of entities by a specified amount.

Syntax

SclEnt(miblist(1), nent, scale(1))

Parameters

miblist: Integer4 array of nent elements (input/output)
 This parameter specifies the list of MIB numbers of the
 entities that are to be scaled.
nent: Integer4 expression (input)
 This parameter specifies the number of entities to be scaled
scale: Real array of 6 elements (input/output)
 This array specifies a point to scale about and the X, Y, and
 Z scale factors. This array should have the same values as
 elements 13 through 15 of the transforination matrix. The
 scale parameter could be replaced with transform(13).

4-214 UPL Revision 6.0

Statements and Intrinsics

SclEntCopy

Type

Intrinsic Procedure Database Access

Purpose

Scales a copy of a set of entities by a specified amount.

Syntax

SclEntCopy(miblist(1), nent, scale(1))

Parameters

miblist: Integer4 array of nent elements (input/output)
 This parameter specifies the list of MIB numbers of the
 entities that are to be scaled.
nent: Integer4 expression (input)
 This parameter specifies the number of entities to be scaled.
scale: Real array of 6 elements (input/output)
 This array specifies a point to scale about and the X, Y, and
 Z scale factors. This array should have the same values as
 elements 10 through 15 of the transforrnation matrix. The
 scale parameter could be replaced with transform(10).

4-215 Statements and Intrinsics

Statements and Intrinsics

Send

Type

Statement Input/Output (Window)

Purpose

Executes a Personal Designer command from within a UPL program by
sending expressions to the Personal Designer command processor.
After Personal Designer processes the expression, the UPL program
continues.
The Send statement, is the easiest way to manipulate the database and
graphics. A faster, but slightly more difficult, method is to use the
database access statements Erase, Insert, Modify, and Verify. See
these statements for more information. An even faster method is to use
the Database Access intrinsic procedures. See Chapter 3, "Functional
Listing," for more information.

Syntax

Send expr: f1: f2,...,

Keyword modifiers

expr: an optional expression of any data type except file. After the
 expression is evaluated, the result is sent to the Personal
 Designer command processor as a stream of characters. The
 syntax of the commands sent to the command processor is
 not checked for the correct Personal Designer command
 syntax. lf the command is incorrect, the system rejects the
 command and continues executing the UPL program.
f1: Optional field width to be used with expr. lt specifies the field

width to set expr in. lf the field width is positive, the expression
is printed rightjustified. lf the field width is negative, the
expression is printed leftjustified.

f2: Optional expression to be used with f1. This expression
formats the decimal places for real and coordinate values.
Replace f2 with the number of decimal places you want the

value sent in. If f2 is negative, the number is printed in
exponential form.

4-216 UPL Revision 6. 0

Statements and Intrinsics

When you run a program with the Send statement, you see the
expressions displayed on the screen as they are sent. You can control
the display of characters with the Echo statement. Use Echo Off to
suppress the display and Echo On to resume the display after the Send
statement is executed. Initially, Echo is set to On.

To change the window which the commands are echoed in, use the
SendWin system variable to specify the window number. For more
information, see DefineAW and the SendWin variable in Appendix B,
"System Variabies."

When writing expressions for the Send statement, use quotes around
each string, and commas to separate each expression. Verify the correct
syntax for the command before sending it, since even one misplaced
comma will prevent the command from being executed.

Before you use the Send statement in a UPL program, first execute an
empty Send statement to send back the first character, which is ignored.
This allows the UPL program to have control before Personal Designer
requests user input.

The last character you send in a Send statement is stored in the
LastChar system variable.

lf the last item in the Send statement is a comma, then no <CR> is sent.
Otherwise, it is.

lt is possible to send part of a Personal Designer command in one Send
statement and the remainder of the command in another Send
statement. However, there are some statements and procedures which
should not be used while only a portion of a Personal Designer
statement has been sent. These include all database access statements
and intrinsic procedures, and the user interface intrinsic procedures
which allow access to the Getdata processor. See Chapter 3,
"Functional Listing," for more information.

Many Personal Designer commands, such as INSERT TFILE, require
access to files. lf you have three or four files open and invoke these
commands with the Send statement, you may receive an error message
such as "VNP table file read/write error" or "Modifier file read/write error."
You must close one of the open files temporarily to allow the command
to be executed.

4-217 Statements and Intrinsics

Statements and Intrinsics

Examples

SEND 'INS LIN:X ',X,'Y ',Y,

SEND 'Z ',Z:10:3

SEND -- Sends only a <CR>

4-218 UPL Revision 6.0

Statements and Intrinsics

SetBit

Type

Intrinsic Procedure Arithmetic

Purpose

Sets the value of a bit in the bittable parameter. This value is located at the
offset specified by the ibit parameter. See the GetBit procedure for more
information.

Syntax

SetBit(bittable(1), ibit, ival)

Parameters

bittable: Integer variable or array (input/output)
 On input, this parameter specifies a table of bits. Each bit
 can have a value of zero or one. Each integer element in
 bittable can store 16 binary bit values. On output, it returns
 the bit table with the new bit value set.
ibit: Integer expression (input)
 This parameter specifies the offset in the bittable(1)
 Parameter you want returned. Bit 0 is the least significant bit
 of the first integer in bittable.
ival: Integer expression (input)
 This parameter specifies the value to set the bit to:

 -1 The bit changes to the opposite of whatit currently
 is. This is an "exclusive OR" operation.

 0 sets the bit to 0.

 1 sets the bit to 1.

4-219 Statements and Intrinsics

Statements and Intrinsics

SetHelp

Type

Intrinsic Procedure User Interface

Purpose

Allows you to set up on-line help for a UPL program. With SetHelp, you
can customize your help system to behave like the Personal Designer
help system. See the HELP command in the Personal Designer and
microDRAFT Revision 6.0 User Reference Guide for more information.
Make a call to SetHelp before each call to the AskModifiers, GetDig,
GetEnd, or GetEnt procedures. This ensures that your users can
access the appropriate help screen any time they are prompted for data.
See Appendix H, "Writing Personal Designer Commands," for more
information.

Syntax

SetHeip(helpfn, vnpindex, modifierindex, getdataindex)

Parameters

helpfn: String Expression (input)
 This parameter specifies the name of the help file to use to
 get the help information from. Before you exit your UPL
 program, you should use SetHeip with the helpfn parameter
 set to a blank string (""). This will cause the help system to
 use the default Personal Designer help file.

vnpindex: Integer expression (input)
 This parameter specifies the verb/noun table index number.
 This is usually set to one for UPL program help files. See
 Appendix H, "Writing Personal Designer Commands", for
 more information.

You should set the verb/noun table index number even
though you will not pass control of your UPL program to the
verb/noun processor for a long period of time. All modifier

4-220 UPL Revision 6.0

Statements and Intrinsics

and Getdata processor help is associated with the
verb/noun processor index, and the user may need
help with these portions of the command as well as on
the verb/noun portion of your customized command.

modifierindex: Integer expression (input) This parameter specifies the

modifier tabie index number. This is usually set to one
for UPL program help files.

getdataindex: Integer expression (input)
This parameter specifies the Getdata processor help
index number.

4-221 Statements and Intrinsics

Statements and Intrinsics

SetLayer

Type

Intrinsic Procedure Graphics

Purpose

Sets the echo display of a given layer or all layers. lf the layernumber
parameter is zero, all layers are set. Otherwise only the single layer
specified will be set. For more information, see GetLayer and the
Personal Designer command ECHO LAYER in the Personal Designer
and microDRAFT Revision 6. 0 User Reference Guide.

Syntax

SetLayer(layernumber, howtosetlayer)

Parameters

layernumber: Integer expression (input)
 This parameter specifies the layer number to set. Input
 values are 1 through 256. A zero sets all layers.
howtosetlayer: Integer expression (input)
 This parameter specifies how to set the layer:

 0 turns layer off.

 1 turns layer on.

 2 turns off layers on, and on layers off.

4-222 UPL Revision 6.0

Statements and Intrinsics

SetMenulnfo

Type

Intrinsic Procedure User Interface

Purpose

Defines a new on-screen menu area or updates an existing one. An
on-screen menu area may contain either an icon or an icon set. For
more information, see the Personal Designer and microDRAFT Revision
6. 0 User Reference Guide.

The menu area to create or update is determined by areacorners. lf this
matches an existing area in setnumber, the menu area is updated with
the new cmdstring; its menu area number is then returned in
areanumber. lf the area does not match, a new menu area is created in
setnumber with cmdstring; this is assigned a new area number which is

returned in areanumber.

Note that the menu area is limited to the be within the area defined for
setnumber. Be aware that if you define a menu area outside of the

setnumber area, the menu area will shrink to be within the setnumber
area.

Syntax

SetMenuInfo(areanumber, setnumber, areacorners, cmdstring)

Parameters

areanumber: Integer variable (input/output)
 On input, this parameter specifies the menu area number to
 be created or modified. On output, it specifies the newly
 created or modified menu area number.
setnumber: Integer expression (input)
 This parameter specifies the icon set number of the new or
 modified area. The set number is also known as the layer
 number.
areacorners: Integer array of 4 elements (input/output)
 This parameter specifies the lower left and upper right
 corners of the menu area.

4-223 Statements and Intrinsics

Statements and Intrinsics

cmdstring: String expression (input)
 This parameter specifies the new or modified command
 string to be associated with the new area.

4-224 UPL Revision 6.0

Statements and Intrinsics

SetTagField

Type

Intrinsic Procedure Database Access

Purpose

Sets a tag field on an entity. lf the entity does not have a tag, the
procedure will automatically add one to it.

There are two parts to an entity tag. The first part is an entity tag value.
Entities may have only one tag value. See TagMib and MibTag for more
information.

The second part of an entity tag is the tag field. This is a text string
associated with an entity tag. An entity may have many tag fields.

Syntax

SetTagField(mib, fieldnumber,fieldstring)

Parameters

mib: Integer4 expression (input)
 This parameter specifies the MIB number of the entity to set
 the tag field for. If the entity does not have a tag, the
 procedure will automatically add one to it. The tag will be
 the next available number in the sequence. See the
 GetTagField procedure for more information.

An entity MIB number can be determined in several ways, one
of which is with the TagMib procedure.

fieldnumber: Integer expression (input)
 This parameter specifies the field number to set for the
 entity. Field zero cannot be set because it holds the system
 tag number. lf there are less tags than specified by
 fieldnumber, the system fills in empty fields until it reaches

 the number specified in fieldnumber.

fieldstring: String expression (input)
 This parameter specifies the text string to put into the field.
 There is a total of 996 bytes for all tag fields. Each tag field
 uses two bytes. Each character given in fieldstring uses one
 byte. Be sure you do not exceed this limit.

4-225 Statements and Intrinsics

Statements and Intrinsics

ShadeColor

Type

Intrinsic Function Graphics

Purpose

Returns an integer which is the color index number for a given color and
shade. This value may be used in routines that use a color index
number.

Syntax

ShadeColor(color shade)

Parameters

color: Integer expression (input)
 This parameter specifies the color index number. Values are
 0 through 7:

0 black.
1 red.
3 blue.
4 yellow.
5 cyan.
6 magenta.
7 white.

shade: Integer expression (input)
 This parameter specifies the shade value. Values range from
 1 through 127; 1 is the darkest and 127 is the lightest. Shade
 64 is the brightest.
 From 64 through 127, equal amounts of the two colors
 complimentaty to the given color are added on an increasing
 basis until the color reaches white.

4-226 UPL Revision 6.0

Statements and Intrinsics

Sin

Type

Intrinsic Function Trigonometric

Purpose

Returns the sine of an angle. This function returns a real value.

Syntax

Sin(rexpr)

Parameters

rexpr: Real expression (input)
 This parameter specifies the angle in radians whose sine will
 be returned.

4-227 Statements and Intrinsics

Statements and Intrinsics

Size

Type

Intrinsic Function System Interface

Purpose

This intrinsie is superceded by Size4 for UPL version 5.0 and later. It is
retained for compatibility with programs written under earlier versions.
Returns the number of 128 byte blocks in a given file. This function
returns an integer.

Syntax

Size(sexpr)

Parameters

sexpr: String expression (input)
This parameter specifies a string expression that is the name
of a file. Zero is returned if the file does not exist or has a
length of zero.

4-228 UPL Revision 6.0

Statements and Intrinsics

Size4

Type

Intrinsic Function System Interface

Purpose

Returns the number of bytes in a file. This function returns an integer4. lt
supercedes the intrinsic Size in UPL version 5.0 and later.

Syntax

Size(sexpr)

Parameters

sexpr: String expression (input)
 This parameter specifies a string expression that is the name
 of a file. Zero is returned if the file does not exist or has a
 length of zero.

4-229 Statements and Intrinsics

Statements and Intrinsics

Sleep

Type

Statement Flow Control

Purpose

Causes a UPL program to "go to sleep" or wait in the background for a
specified number of verb/noun processor (VNP) commands. No other UPL
program may be run while a UPL program is in the sleep mode.

Syntax

Sleep n, vnp,...

Keyword modifiers

n: Optional expression. This specifies the number of Personal
 Designer commands to execute before the UPL program
 "awakes" or begins to run. lf n is a negative one, the UPL
 program will not begin running until the Personal Designer
 AWAKE command is given. Note that the AWAKE
 command can also be used when n is not negative one. The
 default value for n is one.
vnp: Optional expression that can be used only if n is given.
 These are VNP numbers. lf all the numbers are positive,
 only those commands may be input by the user. lf any of the
 numbers are negative, all commands except the ones given
 will be accepted. The AWAKE command cannot be
 excluded.
 VNP numbers can be determined for any Personal Designer
 command by using the Personal Designer command SELect
 MESSage HELP. lf this command is used, the VNP number
 for each command is displayed before the command is
 executed. To turn off the display, use the Personal Designer
 command SELect MESSages NORMal.
 You can also obtain VNP index numbers by looking at the
 file PDVNP.DEF, or by creating the file with the BLDF
 utility and using the following file as input:

4-230 UPL Revision 6.0

Statements and Intrinsics

BEGIN VNP
FILE \PD5\GCD3.VNP
DUMP PDVNP.DEF
END VNP
END

Examples

Sleep

Sleep 10

Sleep J*20

--allows only INS CIR, INS LIN,
--INS STG and REPAint

Sleep 5, 203, 2001, 2022, 1002

--allow all commands
--except INS CIR, INS LIN, INS STG and REPAint

Sleep K+2, -1002, -203, -2001, -2022

4-231 Statements and Intrinsics

Statements and Intrinsics

String

Type

Statement Declaration

Purpose

Declares the name, data type, aggregate type, and initial value of a string
variable. An initial value is optional. Array variables must be declared with
their maximum subscripts.

Variables of string data type contain strings of characters from the ASCII
Character Set. See Appendix F, "ASCII Character Set," for more
information.

Syntax

String svar: iconst1 = sconst | sarray(iconst2,...): iconst1,...

Keyword modifiers

svar: Name of the string variable. Only the first 16 characters are
used.

iconst1: Maximum length of the string. This specifies how many
characters can be stored in the string. This must be a literal or
named integer constant.

sconst: Optional literal or named string constant. lt is the initial value for
a scalar variable. If the variable is declared in the Group
section, it will be set to this value once at the beginning of the
program. lf the variable is declared in a procedure or function, it
will be set to this value each time the procedure or function is
called.

sarray: Name of the string array variable. Only the first 16 characters
are used.

iconst2: array subscripts. These declare the variable to have aggregate
type array. Up to five subscripts may be declared. The
subscripts must be enclosed in parentheses. Array variables
may not be given an initial value.

4-232 UPL Revision 6.0

Statements and Intrinsics

All declaration statements must occur after the Proc, Func, and Group
statements. They must appear before any other type of statements inside
a procedure or function and are the only statements allowed inside the
Group section.

For iyiore information, see Chapter 2, "Program Structure," and Appendix
E, "Internal Data Format."

Examples

String FileName:60

String CommandPrompt:18 = 'Type next command:'
String Answer:1

String NameTable(1000):16

4-233 Statements and Intrinsics

Statements and Intrinsics

String

Type

Intrinsic Function Data Conversion

Purpose

Converts real, coordinate, integer, integer4, and Boolean expressions to
a string value and returns the value. The field width and the number of
decimal places are optional; if used, they must be integer constants. If
there are too many characters for the specified field width, characters
are dropped from the right of the field.

Syntax

String(expr: f 1: f2)

Parameters

expr: Real, coordinate, integer, integer4 or Boolean expression
(input). This specifies the real, coordinate, integer, integer4 or
Boolean expression that is converted to a string.

f1: Optional expression that can be used with expr. This lets you
format the output of the expression by indicating the field width.
Replace f1 with the field width the expr value is to be printed in.
The expression is printed rightjustified if the field width is
positive and left justified if the field width is negative. Always
choose a field width that will accommodate the length of the
longest expression to be printed.

lf you try to print an expression that is longer than the given field
width, the expression is truncated on the right. lf no field width is
given, the statement uses any field width that is necessary to
print the value.

f2: Optional expression that can be used with f1 to format the

 decimal spacing for real and coordinate values. Replace f2
 with the number of places to the right of the decimal point.
 The decimal point uses one decimal place. lf f2 is negative,

4-234 UPL Revision 6.0

Statements and Intrinsics

the number is printed in exponential form. Note that trailing
zeros will be added to fill out the field if the value can be exactly
expressed in fewer decimal places than specified by f2. lf the

number cannot be expressed in exactly f2 decimal places, it will
be rounded up. The default value is to print all significant digits
and one trailing zero.

4-235 Statements and Intrinsics

Statements and Intrinsics

StrWide

Type

Intrinsic Procedure Database Access

Purpose

Returns a new set of string vertices at an offset from an existing set of
vertices. The new set of vertices defines a "wide string."

Syntax

StrWide(vertices(1), nvert, width, just, viewno, newveritces(1), newnverts)

Parameters

vertices: Coordinate array of nvert elements (input/output)
 This parameter specifies the existing set of vertices.

nvert: Integer expression (input)
 This parameter specifies the nurnber of vertices in the
 vertices parameter. The maximum is 333 vertices.

width: Real expression (input)
 This specifies the width of the wide string. This parameter is
 the offset from the existing vertices that will be used to
 generate the new set of vertices.

just: Integer expression (input)
 This parameter specifies string justification:

 -1 leftjustification.
 0 center justification.
 1 rightjustification.

 A vector between the first and second vertices establishes the
 direction for justification.

viewno: Integer expression (input)
 This parameter specifies the view transformation to use for
 generating the new set of points. The wide string will be
 generated in the X/Y plane of this view number. View one is
 model coordinates.

4-236 UPL Revision 6.0

Statements and Intrinsics

newvertices: Coordinate array of newnvert elements (input/output)
 This parameter returns the wide string vertices.

newnvert: Integer variable (input/output)
 This returns the number of vertices in the newnvert
 Parameter.

4-237 Statements and Intrinsics

Statements and Intrinsics

SqRt

Type

Intrinsic Function Arithmetic

Purpose

Returns the square root of a real expression. This function returns a real value.

Syntax

SqRt(rexpr)

Parameters

rexpr: Real expression (input)
 This parameter specifies the real expression whose square
 root will be returned.

4-238 UPL Revision 6.0

Statements and Intrinsics

SysVarI

Type

Intrinsic Procedure Operating System

Purpose

Returns or sets the values of Personal Designer system variables whose
data type is integer.

Syntax

SysVarI(iexpr ival)

Parameters

iexpr: Integer expression (input)
 This parameter speeifies the system variable to return or set If
 its value is positive, the variable is returned in ival. lf its value is

 negative, the variable is set to the value in ival.
 The variables are shown in the list below. All of the variables
 can be read. Variables marked with an asterisk may be set as
 well. Only advanced users should set these system variables.
 Incorrect use could damage or destroy your part database. lt is
 best not to change any variables you do not understand.Refer to
 the lists below for Personal Designer system variables and
 system colors.
ival: Integer array (input/output)
 This parameter returns the values of the Personal Designer
 system variabies if ivar is positive. lf ivar is negative, it
 specifies the input value. The size of the array depends on the
 value of the ivar parameter. The size of the array depends upon
 the information being returned or set

 1 * currently selected color

 2 * currently selected font

 3 currently selected layer

4-239 Statements and Intrinsics

Statements and Intrinsics

 4 currently selected view

 5 no. of entities in part, including erased entities

 6 on-screen menu on/off flag

 7 echo command flag

 0 = all echoing on

 1 = equivalent to Personal Designer 'echo comm off

 2 = equivalent to UPL 'echo off

 8 journal file flag

 9 menu no. of menu that cursor is currently over

 10 current number of active icon boxes

11 current graphics cursor location returned as

 X and Y pixel coordinates.

 12 current CPL number returned; 0 is returned if no CPL

 is active)

 13 network flag

 0 = no network active

 1 = network active

 14 drawing read only flag

 0 = read only

 1 = read/write

System Colors

 101* digitize marker color.

 102* window entity box color.

 103* normal cross hair.

 104* grid dot color for quadrants + + and --.

 105* default entity color.

 106* system text color.

 107* user text color.

 108* entity identification cross hair color.

 109 * grid dot color for quadrants -+ and +-.

4-240 UPL Revision 6.0

Statements and Intrinsics

110* notused.

111* icon highlight color used by edit menu command.

112* notused.

113* on-screen icon menu cursor color.

114* message text color.

115* warning message text color.

116* error message text color.

117* cross-hatched X,Y coordinate color.

118* helptextcolor.

119 * general window text color.

120* menu icon highlight color.

 1016 Read status of autosave on = 1, off = 0

 1100 Read currently selected font number

1140 - 1155* A 16-byte buffer which may be used to pass
data between UPL programs. This buffer must
be accessed two bytes at a time, treated as
integers. Other values may be stored by using
based variables.

 1217 - 1222* database header bit flags (bytes 144-127 of

 header)

 1233* XH (crosshatch) solid fill flag

 0 - normal, depends on pattern #

 1 - XH solid fill off

 2 - all XHs are solid filled

 1242 maximum number of entities in the Active Entity

 Table

 1249* beep control, 0 = on, 1 = off

 1254 UNDO, 1 = on, 0 = off

 1256 coordinate display, 1 = on, 0 = off

 1286 last MIB number read in database search

 1301 CPL indicator axes displayed, 1 = on, 0 = off

4-241 Statements and Intrinsics

Statements and Intrinsics

 1302 MV number containing most recent entity pick

 (if multiple entity pick such as a WIN, MV

 number containing last entity found is returned)

 1303 MVs, 1 = on, 0 = off

 1311 MIB number of last entity that was stored in

 the memory portion of the display list

 1312" Getdata angle lock, 1 = on, 0 = off

 1313* Getdata color mask

 1314* figure activate flag, 0 = no, 1 = yes, 2 = ask

 1333* next available group number

 1375 perspective, 1 = on, 0 = off

 1379* Read and/or set/clear "SEL TEXT OFF/ON";

 display text, 1 = on, 0 = off

 1385 hard fonts, 1 = on, 0 off

 1387* database pack flag, 0 no, 1 yes, 2 = ask

 1474* visibility flag, 1 = VCON, 0 VALL

 1511* Read and/or set/clear "SEL GRID ON/OFF';

 grid on = 1, grid off = 0

 1512* Read and/or set MIB number where next entity

 pick search will start.

Note that SysVarl variables 2001-2038 are dimensioning
variables. They contain the values currently in effect in the
system. This data is initialized when the part is opened by
reading the MD subrecord of the Part Parameter Entity (PPE).
When the part is filed, Personal Designer updates the PPE
entity. Between part initialization and filing, use these SysVarl
variables to obtain the correct values.

 2001 * dimensioning arrow head type

 2002* dimensioning precision

 2003* dimensioning tolerance precision

 2004* diameter dimensioning type

 2005* suppress both witness lines? no 0, yes <> 0

 2006* suppress first witness lines? no 0, yes <> 0

 2007* suppress second witness lines? no = 0, yes <> 0

 2008* display both witness lines? no = 0, yes <> 0

 2009* VALL for dimensions? no 0, yes <> 0

 2010* VCON for dimensions? no 0, yes <> 0

4-242 UPL Revision 6.0

Statements and Intrinsics

 2011* point to point dimension? no = 0, yes <> 0

 2012* horizontal dimension? no = 0, yes <> 0

 2013* vertical dimension? no = 0, yes <> 0

 2014* dimension arrows in? no = 0, yes <> 0

 2015* dimension arrows out? no = 0, yes <> 0

 2016* auto justify dimension text? no = 0, yes <> 0

 2017* leftjustify dimension text? no = 0, yes <> 0

 2018* center dimension? no = 0, yes <> 0

 2019* no dimension centering? no = 0, yes <> 0

 2020* prefix dimension text? no = 0, yes <> 0

 2021* suffix dimension text? no = 0, yes <> 0

 2022* no diameter symbol? no = 0, yes <> 0

 2023* diameter symbol? no = 0, yes <> 0

 2024* diameter symbol word? no = 0, yes <> 0

 2025* align dimension? no = 0, yes <> 0

 2026* do not align dimension? no = 0, yes <> 0

 2027* ANSI dimensioning? no = 0, yes <> 0

 2028* JIS dimensioning? no = 0, yes <> 0

 2029* dimension feet mode? no 0, yes <> 0

 2030* dimension inch mode? no 0, yes <> 0

 2031* dimension tolerance type

 2032* use comma in dimension numbers?

 no = 0, yes <> 0

 2033* use decimal point in dimension numbers?

 no = 0, yes <> 0

 2034* have trailing zeros in dimension numbers?

 no = 0, yes <> 0

 2035* do not have trailing zeros in dimension numbers?

 no=O,yes<>0

 2036* DIN dimensioning? no = 0, yes <> 0

 2037* have leading zeros in dimension numbers?

 no = 0, yes <> 0

 2038* do not have leading zeros in dimension numbers?

 no = 0,yes<>0

4-243 Statements and Intrinsics

Statements and Intrinsics

SysVarI4

Type

Intrinsic Procedure Operating System

Purpose

Returns or sets the values of Personal Designer system variables whose data
type is integer4.

Syntax

SysVarI4(iexp, i4val)

Parameters

iexpr: Integer expression (input)
 This parameter specifies the system value to return.
 Currently there is only one Integer4 system value defined.
 1 = number of entities in the part database.
i4val: Integer4 array (input/output)
 This parameter returns the values of the Personal Designer
 system variable specified by iexpr.

4-244 UPL Revision 6.0

Statements and Intrinsics

SysVarR

Type

Intrinsic Procedure Operating System

Purpose

Returns the values of Personal Designer system variables whose data type is
real.

Syntax

SysVarR(rexp, rval)

Parameters

rexp: Integer expression (input)
 This parameter specifies the system value to return:

 1 current screen scaie factor.

 2 current screen extents in view space.

 3 current construction depth.

 4 current drawing extents in model space.

 Additional values are listed below.

rval: Real array (input/output)
 This parameter returns the value of the system variables. The
 size of the array depends on the value of rexp. Refer to the
 following system variable list.

 When rvar = 1, rval (1) screen scale factor

 When rvar = 2,

 rval (1) minimum X

 rval (2) maximum X

 rval (3) minimum Y

 rval (4) maximum Y

4-245 Statements and Intrinsics

Statements and Intrinsics

 When rvar = 3, rval (1) construction depth

 When rvar = 4,

 rval(1) minimum X extent

 rval(2) minimum Y extent

 rval(3) minimum Z extent

 rval(4) maximum X extent

 rval(5) maximum Y extent

 rval(6) maximum Z extent

Notes

Text, Dimension, and Grid Variables:
SysVarR variabies 1239-1241, 1252-1255, and 2000-2001 contain the
values currently in effect in the system. This data is initialized when the part
is opened by reading the MD subrecord of the Part Parameter Entity (PPE).
When the part is filed, Personal Designer updates the PPE entity. Between
part initialization and filing, use these SysVarR variabies to obtain the
correct values.

Other System Variables

Note that all variables can be read. An asterisk indicates a variable can
also be set..

 1113 soft fonts scale factor

 1118 trap size in screen inches

 1119 Read and/or set digitize mark ('gleep') size in screen

 inches

 1123 plotting point entity size in inches

 1124 Read and/or set screen point entity size in inches

 1158-1163 Read drawing extents X,YZ min and X,YZ max

 1181 -1183 model space coordinates of perspective eye point

 1184-1186 view space coordinates of perspective eye point

 1187 perspective depth

4-246 UPL Revision 6.0

Statements and Intrinsics

 1192* Read and/or set ZOOM ALL border percent factor

 1200 global scale factor

 1223 - 1225* Read and/or set X,YZ model space location of most
recent digitize

 1239* Read and/or set default text entity line spacing

 1240* Read and/or set default text entity height

 1241 * Read and/or set default text entity width

 1252 - 1253* Read and/or set grid origin x,y

 1254 - 1255* grid increment x,y

 2001 * dimension angle

 2002* dimension text height

 2003* dimension text width

 2004* dimension arrow head size

 2005* dimension offset

 2006* dimension scale

 2007* dimension both tolerances

 2008* dimension positive tolerance

 2009* dimension minus tolerance

 2010* dimension tolerance text height

 2011 * dimension text line spacing

 3001 - 3016* soft font definition arrays. Each soft font definition

contains 10 numbers, so a REAL array dimension
to at least 10 must be used.

Part Extents:

SysVarR variables 1158-163 are the part extents. These
values are not initialized until a ZOOM ALL or REGEN is executed. Until
then, the program must directly access the EX subrecord of the PPE to
obtain the part extents.

Other System Variables:

SysVarR variables 1113-1119, 1123-1124, 1158-1163, 1181-1187,
1192, and 1200-1225 are not stored in the part database. Instead they
are initialized form the file PD.CFG but are not written back to it.

4-247 Statements and Intrinsics

Statements and Intrinsics

SysVarS

Type

Intrinsic Procedure Operating System

Purpose

Returns or sets the values of Personal Designer system variables whose
data type is string.

Syntax

SysVarS(ivar, sval)

Parameters

ivar: Integer expression (input)
 This parameter specifies the system value to return or set. If
 the number is positive the value is returned as speeified in
 the list below. lf the number is negative, you can set the
 value specified in the list below. Currently only number 50
 can be set; all the numbers can be returned:

 1 - 20 = file names of device drivers, support, and temporary
 data files:

1 Graphics deviee driver.

2 Input device driver.

3 Initial plot device driver.

4 Low level 10 driver.

5 Verb/noun command table.

6 Prompts/message file.

7 Help file.

8 Macro definitions.

9 Initial tablet menu file.

10 Initial color/pen table.

4-248 UPL Revision 6.0

Statements and Intrinsics

11 Undo (OOPS) transaction file.

12 Start-up UPL program.

13 Initial text font definition.

14 Modifier words.

15 GetData command words.

17 MIB file name.

18 PDF file name.

19 Initial on-screen menu definition file.

20 Entity list file.

50 Current part file name; this can be set and

 returned using sval. lt is the name the file will be

 written to if you file the part.

51 User/login name

52 Network name

sval: String variable (input/output)

 This parameter retums the string system data if ivar is

 positive. lt specifies the string value if ivar is negative. The

 size of the string depends on the value of the ivar parameter.
 The string may be up to 64 characters long.

4-249 Statements and Intrinsics

Statements and Intrinsics

Tan

Type

Intrinsic Function Trigonometric

Purpose

Returns the tangent of an angle. This function returns a real value.

Syntax

Tan(rexpr)

Parameters

rexpr: Real expression (input)
 This parameter specifies the angle (in radians) whose tangent
 will be returned.

4-250 UPL Revision 6.0

Statements and Intrinsics

TagMib

Type

Intrinsic Procedure Database Access

Purpose

Returns the MIB number of a tagged entity.
There are two parts to an entity tag. The first part is an entity tag value. This is
an integer which starts at zero and grows to over four million. An integer this
size cannot be supported in UPL, so the number is specified as a string of 10
characters. An entity may have only one tag value.
The second part of an entity tag is the tag field. This is a text string associated
with an entity tag. An entity may have many tag fields. See SetTagField and
GetTagField for more information.

Syntax

TagMib(tagvalstr,mib)

Parameters

tagvalstr: String expression of 10 characters (input)
 This parameter specifies the tag value to find an MIB
 number for.
mib: Integer4 variable (input/output)
 This parameter retums the MIB number of the entity with
 the tag value. A zero is returned if no entity can be found
 with the given tag value.

4-251 Statements and Intrinsics

Statements and Intrinsics

TextColor

Type

Intrinsic Procedure Input/Output (Window)

Purpose

Sets the color of the text drawn in the alphanumeric windows. The Print,
Accept (with a Prompt modifier), and Display statements use this color
when displaying text.

Syntax

TextColor(color)

Parameters

color: Integer expression (input)
 This parameter specifies the color number to use for the text.
 Values are 0 through 15 and 101 through 120. For color
 values 0 through 15, refer to the SELECT COLOR
 command in the Personal Designer and microDRAFT
 Revision 6. 0 User Reference Guide.
 If color is greater than 100, the actual color number is
 obtained from the color table given in the configuration file.
 For example, if color = 106, the sixth value from the color
 table would be used as the color value. For color values 101
 through 120 see SysVarl.

4-252 UPL Revision 6.0

Statements and Intrinsics

Time

Type

Intrinsic Function System Interface

Purpose

Returns the current system time in the format: HH:MM:SS.SS. This function
returns a string value 11 characters long.

Syntax

Time()

Parameters

The Time function has no parameters.

4-253 Statements and Intrinsics

Statements and Intrinsics

Transpose

Type

Intrinsic Procedure Geometric

Purpose

Returns a matrix transposed about its diagonal elements. This procedure is
useful for transposing a transformation matrix. See Appendix E, "Internal Data
Format" for information on the Transformation matrix.

Syntax

Transpose(transform(1))

Parameters

transform: Real array of 15 elernents (input/output)
 On input, this specifies the transforrnation matrix to be
 transposed. Only the first nine elements of transform are
 modified. On output, this parameter returns the transposed
 matrix.

4-254 UPL Revision 6.0

Statements and Intrinsics

TwoPi

Type

Intrinsic Function Trigonometrie

Purpose

Returns the real value equal to 6.283185.

Syntax

TwoPi()

Parameters

The TwoPi function has no parameters.

4-255 Statements and Intrinsics

Statements and Intrinsics

UpperCase

Type

Intrinsic Function String Handling

Purpose

Returns a string with all lower case letters to converted upper case letters.

Syntax

UpperCase(str)

Parameters

str: String expression (input)
 This parameter specifies the string to convert. Uppercase
 letters will stay in uppercase. Any characters that are not
 letters will stay the same.

Example

String Command: 20
 :
Command = "INSert LINE:"

-- this will print: "INSert LINe:"
Print Command

-- this will print: "INSERT LINE:"
Print Uppercase (Command)

4-256 UPL Revision 6.0

Statements and Intrinsics

VCross

Type

Intrinsic Funetion Geometric

Purpose

Returns a vector (or cross) product of two vectors represented by
coordinate expressions and returns a vector represented by a coordinate
value equal to (cexpr2 x cexpr1).

Syntax

VCross(cexpri, cexpr2)

Parameters

Cexpr1: Coordinate expression (input)
 This parameter specifies the endpoint of a veetor (starting at
 [0,0,0]) that is to be cross multiplied.

cexpr2: Coordinate expression (input)
 This parameter specifies the endpoint of the other vector
 (starting at [0,0,0]) that is to be multiplied.

 NOTE: A coordinate value representing a vector is obtained
 by subtracting the coordinate of the starting point of a vector
 from its ending point. For example, if a vector is directed
 from coordinate CI to coordinate C2, it can be represented
 by the coordinate C2 - C 1.

4-257 Statements and Intrinsics

Statements and Intrinsics

VDot

Type

Intrinsic Function Geometric

Purpose

Returns a real equal to a dot (scalar) product of cexpr1 and cexpr2.

Syntax

VDot(cexpr1, cexpr2)

Parameters

cexpr1: Coordinate expression (input)
 This parameter specifies the endpoint of a vector (starting at
 [0,0,0]) that is to be dot multiplied.
cexpr2: Coordinate expression (input)
 This parameter specifies the endpoint of the other vector
 (starting at [0,0,0]) that is to be dot multiplied.

NOTE: A coordinate value representing a veetor is
obtained by subtracting the coordinate of the starting point
of a vector from its ending point. For example, if a vector is
directed from coordinate C 1 to coordinate C2, it can be
represented by the coordinate C2 - C 1.

4-258 UPL Revision 6.0

Statements and Intrinsics

Verify

Type

Statement Database Access

Purpose

Returns information about existing entities in the current drawing database.
Only the current file may have entities verified.
Entities are referenced by Master Index Block (MIB) numbers. The number
identifies an entity and gives its location in the database. An MIB number is
assigned when an entity is inserted into the part database by Personal Designer
or a UPL program. The number remains valid until the part is filed or exited with
the pack database option.

Syntax

Verify enttype entloc entatts entdata

Keyword modifiers

enttype: Optional keyword that specifies or returns the type of entity
 to be verified. lf you know what type of entity you want to
 verify, replace enttype with one of the following keywords:
 Line, String, Arc, Text or Point. The enttype keyword must
 directly follow the Verify keyword. The Verify statement
 will only execute entities of the given type.

 lf you want to find out what type of entity is being verified,
 specify the following enttype keyword instead:

 EntTyp(ivar)

 Replace ivar with an integer variable which returns the
 following codes for the verified entity's type:

 1 Line.

 2 String.

 3 Arc.

 4 Text.

4-259 Statements and Intrinsics

Statements and Intrinsics

 5 Point.

 6 Linear dimension.

 7 Label point dimension.

 8 Radial dimension.

 9 Angular dimension.

 10 Cross-hatching.

 11 Figure instance.

 12 Diameter dimension.

 13 Multiple view.

 14 Ellipse.

 15 Construction line.

 16 Curve (cpole).

 17 Surface (spole).

 18 Plane.

 30 NURB curve

 31 NURB surface

 35 3-D Tool path

 36 2 1/2-D Tool path

 145 Display image.

 146 View.

 147 Figure imagelist.

 148 Extents.

entloc: Specifies which entity to verify. You must use an entloc

 keyword in this statement. The entloc keyword can be used
 in two ways; the one you use depends on whether you know
 the MIB number of the entity to be modified.

 lf you know the entity's MIB number, use this forrn for
 entloc:

4-260 UPL Revision 6.0

Statements and Intrinsics

EntId(i4expr)

Replace i4expr with an integer4 expression for the MIB
number. Some intrinsie procedures and functions, such as
GetEnt, allow the user to digitize entities in the graphics
window. Their MIB numbers are then available to the
program. Others, such as FindProp and TagMib, will return
an MIB number when given non-graphical information such
as the entity's properties or tags.
If you do not know the entity's MIB number, you may use
one of the following keywords for entloc:

 First
Verifies the first entity in the database. This will initialize the
database search.
Next Verifies the next entity in the database. This keyword
allows the program to step through the database
sequentially and verify each entity. Each time a Verify Next
statement is executed, the next entity in the database is
verified. A Verify Next statement may also be used after a
Verify Entld(i4expr) statement. The database search will

then start at the i4expr entity instead of the first entity.

 Last
Verifies the last entity in the database. 'Mis keyword allows
the program to verify the last entity inserted into the
database without searching the database from the
beginning.

If the type of entity specified by the enttype keyword does not match the
type found using the entloc keyword, the DBStatus variable is set to
three. When the end of the database is reached, DBStatus is set to two.
See Appendix B, "System Variables," for more information.

Only enttype and entloc keywords can specify which entities
to verify. The entdata keywords may only retum data about
entities.

entatts: Optional keywords that allow you to verify the data of an

 entity. You can use the following entatts keywords with all
 entity types:

 Color(ivar)

 where ivar returns the color number for the verified entity.

4-261 Statements and Intrinsics

Statements and Intrinsics

 Font(ivar)

 where ivar returns the font number for the verified entity.

 Group(ivar)

 where ivar returns the group number of the verified entity.

 Layer(ivar)

 where ivar returns the layer for the verified entity.

Vvis(ivar)

where ivar returns the view number that the verified entity is
visible in. A value of zero means that the entity is visible in
all views.

entdata: Optional keywords that provide the data to be verified for a
 specified enttype. Note that only line, string, arc, text, and
 point entity types are supported. lf the enttype keyword does
 not match the entity found by the entloc keyword, the value
 of the variables given in these entdata keywords will not
 change. The keywords for each enttype are:

For Lines:
 Ends(cvarl, cvar2)
 Returns the endpoint coordinates after the keyword Ends.
 The cvar1 variable returns end one and cvar2 returns end
 two of the line. Both variables return model space
 coordinates.

For Strings:
 Verts(ivar1, carray(iexpr1))
 The coordinates for the vertices
 of a string will be returned in an array after the keyword
 Verts. Replace carray with the name of a coordinate array
 which returns the model space coordinates for the string
 vertices. The ivar variable retums the number of vertices in

 carray, and iexpr1 with the first element to put vertices into.

For Arcs:
 Org(cvar)

 Replace cvar with a coordinate variable which will return the
 model space origin of the arc.

 Radius(rvar)

 Replace rvar with a real variable which will return the radius
 of the arc. Arcs are drawn counterclockwise.

4-262 UPL Revision 6.0

Statements and Intrinsics

AB(rvar)

Replace rvar with a real variable which will return the
beginning angle of the arc in degrees.

AE(rvar)

Replace rvar with a real variable which will return the
ending angle of the arc in degrees.

For Text:
Ang(rvar)

Replace rvar with a real variable which will return the angle
the text was inserted at.

Hgt(rvar)

Replace rvar with a real variable which will return the text
character height.

Just(ivar)

Replace ivar with an integer variable which will return the
textjustification code: 1 - left j ustification 2 - rightjustification
3 - center j ustification

Lnsp(rvar)

Replace rvar with a real variable which will return the text
line spacing factor.

Org(cvar)

Replace cvar with a coordinate variable which will return the
text origin in model space.

Txt(svar)

Replace svar with a string variable that returns the actual

text. Be sure to declare svar to be large enough to hold the
data to be returned.

Wdt(rvar)

Replace rvar with a real variable which will return the text
character width.

For Points:
Loc(cvar)

Replace cvar with a coordinate variable which will return the
model space coordinate of the point.

4-263 Statements and Intrinsics

Statements and Intrinsics

Examples

VERIFY ARC ENT ID(WHICHENT) ORG(ORIG) RADIUS(RAD)
PROC MAIN
INTEGER MIB, icolor
 MIB = 1
 VERIFY FIRST
 LOOP
 MIB = MIB + 1
 VERIFY LINE NEXT COLOR(icolor)
 IF (DBStatus = 0) AND (icolor <> 12)
 MODIFY LINE ENTID(MIB) COLOR(12)
 ELSE IF (DBStatus = 2) THEN
 EXIT 2
 END IF
 END LOOP
END PROC

4-264 UPL Revision 6.0

Statements and Intrinsics

VLen

Type

Intrinsie Function Geometric

Purpose

Returns a real value equal to the distance between two points in
three-dimensional space.

Syntax

VLen(cexpr1, cexpr2)

Parameters

cexpr1: Coordinate expression (input)
 This parameter specifies the first point.

cexpr2: Coordinate expression (input)
 This parameter specifies the second point.

4-265 Statements and Intrinsics

Statements and Intrinsics

Vunit

Type

Intrinsic Function Geometrie

Purpose

Returns the unit vector as a coordinate expression. The vector is one unit long,
starting at the origin, parallel to the vector cexpr.

Syntax

VUnit(cexpr)

Parameters

cexpr: Coordinate expression (input)
 This parameter specifies the coordinate expression whose
 unit vector will be returned.

NOTE: A coordinate value representing a veetor is obtained
by subtracting the coordinate of the starting point of a vector
from its ending point. For example, if a vector is directed from
coordinate Cl to coordinate C2, it can be represented by the
coordinate C2 - C 1.

4-266 UPL Revision 6.0

Statements and Intrinsics

Window

Type

Statement Input/Output

Purpose

Defines the dimensions of the UPL windows on your screen. lt is easier to use
the Window statement but it allows less control than the intrinsic procedure
DerineAW. See DerineAW and Chapter 3, "Functional Listing", for more
information.

Syntax

Window iwin, itop, ibot, ileft, iright

Keyword modifiers

iwin: Replace with the window number you want to define.

itop, ibot, ileft, and iright:

 Allow you to change the top, bottom, left and right dimensions
of the window. The ileft and iright expressions are optional. You
must use commas to separate each expression.

The top line of the screen is line one and the bottom line is
determined by the graphics device used on the user's system.
The intrinsic procedure Pagelnfo will return this value. lt usually
is between 25 and 42.

For an alphanumeric window, if ileft and iright are not given, the
window will fill the width of the screen and the graphics window
will fill the largest remaining rectangular region. lf ileft and iright
are given and are non-zero, then the graphics window is not
changed.

UPL has 10 rectangular windows and a graphics window that allow you
to input and output data. Other windows are reserved for data output by
Personal Designer. The following list describes each window and its
function:

4-267 Statements and Intrinsics

Statements and Intrinsics

 1 General purpose alphanumeric window and Personal

 Designer command window

 2 to 10 General purpose alphanumeric windows

 11 Graphics window

The initial setting for all alphanumeric windows when a UPL program is
started is a window the current size of the Personal Designer command
window, which is window one. The graphics window will occupy the area
left by the command window and the on-screen icon menu.

Windows 1 through 10 are used by the Accept, Display, Print, and
Send statements. When you use one of these statements, your input
data is placed in a window determined by the corresponding system
variable. The system variables are AccptWin, DisplayWin, PrintWin,
and SendWin. For more information, see Appendix B, "System
Variables."

Each window has a cursor which starts in the upper left-hand corner of
the window. When you use the Accept, Display, Print, and Send
statements, the cursor will move to the position immediately following the
last output character. UPL remembers the last eursor position for each
window. When the cursor reaches the bottom of a window, it
automatically scrolls to the window. To move the cursor to a specific
location, see PutCur.

You can overlap as many windows as you like. The window with the
highest priority overlaps the others. For windows 1 through 10, the
window most recently used by the the Accept, Display, Print, or Send
statement assumes the highest priority. For the rest of the windows you
must specify the priority using the DefineAW intrinsic procedure. See
DefineAW and Chapter 3, "Functional Listing", for more information.

Examples

WINDOW 2,1,5,50,80
WINDOW IWIN,ITOP,ITOP+4
WINDOW 3,10,10,30,30 -- a very small window1

-- graphics window at top of screen
WINDOW 11,0,24,1,80

4-268 UPL Revision 6.0

Statements and Intrinsics

Write

Type

Statement Input/Output

Purpose

Transfers data from an expression to a file. The file must be opened with the
Open statement.
Each Write operation is done in 3 steps:

1. Data in an expression is evaluated.

2. Data is then placed in the file starting at the file pointer

3. The file pointer is advanced to the point just after that data.
These steps are performed differently depending on the type of file, the data
type of the expressions, and the way the statement's syntax is used.

Syntax

Write flvar, expr: iexprl: iexpr2....,

Keyword modifiers

flvar: File variable that must have been opened using the Open
statement. The file may have been opened as a text or binary
file, and may use sequential or random access. See the Open
statement for more information.

expr: Optional expression of any data type except file, that can be

used with flvar. The expr expressions must be separated by
commas.
If the file is a text file, the Write statement first evaluates the

expression and then converts the values from expr's data type
to the equivalent character string value. lt then stores the string
value in the file. Characters are written to the file starting at the
file pointer. The file pointer then advances to point to the
position immediately following the last character

4-269 Statements and Intrinsics

Statements and Intrinsics

written. This process repeats for the expressions in the
statement. After all expressions in the statement have been
written, an end-of-line sequence is written to the file. This
starts a new line in the file. The file pointer is advanced to
the beginning of the new line.

Iexpr1: Optional expression that can be used with expr to specify
 how many characters to write. This allows you to set up a
 format in your text file. For example, you could write a file
 of numbers arranged in columns.
 Replace iexprl with a field width. This is an integer
 expression for the number of charaeters to use when
 outputting the value. lf iexprl is positive, the field is right
 justified. lf iexpr1 is negative, the field is leftjustified. The
 unused portion of a field is written as blanks (ASCII 32). lf
 iexpr1 is specified but the value cannot be written in a field

 of iexpr1 characters, the value is truncated on the right. A

 colon must precede iexpr1.

iexpr2: Optional field width for decimal places to be used with

 iexpr1. This may be used for real and coordinate values only.

 lt specifies the number of characters in the iexpr1 field
 which will be used for the decimal places. The "." counts for
 one place. A number of greater preeision is rounded up to fit
 in this field and, a number of less precision is padded with
 zeros. If iexpr2 is negative, exponential notation will be

 used. A colon must precede iexpr2.
 Optional punctuation. If you do not want to leave an
 end-of-line sequence after writing data, put a comma at the
 end of the Write statement. lt will leave the file pointer just
 after the last written character. Any subsequent Write
 statement ending without a comma leaves an end-of-line
 sequence after writing its expressions. In partieular, a
 statement of the form "WRITE flvar" writes a blank line.
 That is, it writes an end-of-line sequence and moves the file
 pointer to the beginning of the new line.

4-270 UPL Revision 6.0

Statements and Intrinsics

If the file is a binary file, the Write statement simply transfers data using
the internal data storage format for binary data. See Appendix E,
"Internal Data Format," for more information. No data type conversion is
done. Each expression's value is transferred to the file starting at the file
pointer and continuing in the following bytes. The number of bytes
written depends on the expression's data type. The file pointer then
advances to the byte immediately following the last byte written. No
end-of-line sequence is written to a binary file.

The field widths iexpr1, iexpr2, and the comma at the end of the Write
statement have no significance with binary files, except when writing a
string expression. In this case iexprl specifies how many characters to
write. lf iexprl is not given, the current length of the string expression is
written.

lf writing to a sequential access file, the current file pointer position
determines the end of the file when you close it. If you are writing to the
middle of an existing file, move the file pointer to the end of the file
before closing it to avoid truncating the file. To move the pointer to the
end of the file, simply keep reading data until the file.EOF attribute is
TRUE. Then close the file.

If Random File Access is used, the file pointer may also be repositioned
using the flvar.POSITION or flvar.POS4 attribute. See the Open
statement and WriteCArray, WriteIArray, WriteRArray intrinsics for more
information.

4-271 Statements and Intrinsics

Statements and Intrinsics

Example

--
proc main
integer i = 5, j = 321
integer ifld = 6, k = -2212
real a = 23.3256
 :
open f1, "data"
 :
write f1, i, j*3, a:10:3, i:fld, ' ':5,'A
string ':-12, k:(ifld*2)
 :
write f1, i:8, j:8,
 :
write f1, 'Another string':20
 :
write f1

end proc
--

This program would write a file which looks like the following three lines
(note: x represents a blank; <cr><lf> is an end-of-line sequence):

5963xxxx23.326xxxxx5xxxxxA
stringxxxxxxxxxxx-2212<cr><lf>
xxxxxxx5xxxxx321xxxxxxAnother string<cr><lf>
<cr><lf>

4-272 UPL Revision 6.0

Statements and Intrinsics

WriteCArray,WritelArray, WriteRArray

Type

Intrinsic Procedure Input/Output (File)

Purpose

Allows fast storage of integer, real or coordinate data to a binary file. lt is
useful for programs which need more than 32,767 bytes of data, the
maximum amount which can be declared in a UPL program. This routine
can be used to write large amounts of data to a file from a buffer array.
The program can then read the data back from the file using the
ReadCArray, ReadArray, and ReadRArray intrinsic procedures.

Syntax

WriteCArray(file, array(1))

WritelArray(file, array(1))

WriteRArray(file, array(1))

Parameters

file: File variable (input/output)
 This parameter specifies the file variable for the data file.
 See the Open statement for more information on file IO. The
 file must be opened as a binary file. Sequential or random
 file access may be used.
array: Coordinate, integer, or real array of any length (input/output)
 This parameter specifies the array from which you write the
 data into the file. It should be declared to be large enough to
 hold all the data to write in one call to WriteCArray,
 WritelArray, and WriteRArray.

The routine takes all the data in the array and writes it to the file starting
at the file pointer. The file pointer is then placed immediately after the
last byte written. The amount of data written is determined by the
number of elements declared in the array. Specifically, each call to
WriteCArray,

4-273 Statements and Intrinsics

Statements and Intrinsics

WritelArray, and WriteRArray writes a number of bytes equal to the
number of elements in the array muttiplied by the number of bytes per
element. The array must always be passed with a subscript of 1:
array (1).

If you are using random file access, the file pointer may be changed to
point to any byte in the file. This is done by setting the file.POSITION or
file.POS4 attribute.

Setting the file. POSITION attribute moves the file pointer to the position
equal to the value of file.POSITION multiplied by the value of
file.RECLEN. That is, the file.POSITION attribute teils the program what
file record to point to. The file.RECLEN attribute says how many bytes
are in the record.

lf your program is writing a file whose arrays are all of the same size and
data type, simply declare your record length to be the size of that array
in bytes. Repositioning the file pointer is then simply a matter of setting
file.POSITION to the array you want.

Setting the file.POS4 attribute moves the file pointer to the given byte
offset into the file. (It is not affected by file.RECLEN or file.POSITION).

lf you are mixing arrays of different data types in the same file, you may
find it easier to set the record length to 1 (using the Reclen keyword in
the Open statement) and use the file.POS4 to set the file pointer as a
byte offset into the file.

When calculating file.POS4, take into account the difference in array
element sizes. That is, a real element takes up as much as two integer
elements and, a coordinate element takes up six times as much as an
integer element.

Since the file.POSITION attribute is itself an integer value, it can only be
set as high as 32,767. Files are therefore limited to 32,767 * file.RECLEN
bytes. lf you want to make a larger file, use the file.POS4 attribute which
will allow a byte offset of up to 2,1147,483,647.

4-274 UPL Revision 6.0

Statements and Intrinsics

Examples

--
-- WRArray.upl
-- This program demonstrates use of WriteRArray.
-- The use of WriteIArray and WriteCArray are
-- very similar.
-- See ReadCArray, ReadIArray, ReadRArray for
-- the program RRArray.upl that will read the
-- file created here.
--

Proc Main

integer I, J, K
integer SavePos
real RealBuffer(100)
file DataFile

-- Open the data file with the length of the
-- data record: 400 = (4 bytes per real) * 100)

open DataFile, 'File.Dat' binary reclen(400)

-- Initialize buffer with random values
-- (for purposes of this demonstration).

loop I=1 to RealBuffer(1).SIZE
 RealBuffer(I) = Rnd()
end loop

-- Write data out to a file.

loop J = 1 to 30

-- Note: the loop below and the call to
-- WriteArray below it write the same
-- data to the same place in the file,
-- however, the call to WriteRArray is
-- MUCH faster!!

 RealBuffer(1) = Real(J) -- some calculation
 SavePos DataFile.POSITION -- save record #
 loop K 1 to RealBuffer(1).SIZE
 write DataFile, RealBuffer(K)
 end loop
 DataFile.POSITION = SavePos -- restore rec. #
 WriteRArray(DataFile, RealBuffer(1))

end loop
end proc

4-275 Statements and Intrinsics

Statements and Intrinsics

--
-- WXArray.upl
-- This program demonstrates use of WriteCArray,
-- WriteIArray, WriteRArray. It creates a file
-- with blocks of 1000 integers, 500 reals and
-- 200 coord data in the same file.
-- A 12 byte header points to the beginning of
-- each section.
-- The program uses the POS4 attribute for
-- positioning the file pointer.
-- See ReadCArray, ReadIArray, ReadRArray for
-- the program RXArray.upl which reads this data
-- file.

proc main

integer IntegerSize = 2
integer RealSize = 4
integer CoordSize = 12
integer HeaderSize = 12

-- Header information
integer4 StartIntegerData
integer4 StartRealData
integer4 StartCoordData

-- Data buffers
integer IntegerBuffer(100)
real RealBuffer(50)
coord CoordBuffer(20)

integer4 Dataoffset
integer I, BufferCnt = 10

file DataFile

-- start of code –
open DataFile 'Data.fil' binary reclen(1)

-- Write data to the file.
-- First write placeholders for header values to
-- be filled in later.
-- Next write the data out. (In this example all
-- the data will be zero values.)
-- Keep track of where each block of data starts.

4-276 UPL Revision 6.0

Statements and Intrinsics

write DataFile, StartIntegerData, StartRealData, \
 StartCoordData
StartIntegerData = DataFile.POS4
loop I=1 to BufferCnt
 WriteIArray(DataFile, IntegerBuffer(1))
end loop

StartRealData = DataFile.POS4
loop I=1 to BufferCnt
 WriteRArray(DataFile, RealBuffer(1))
end loop

StartCoordData = DataFile.POS4
loop I=1 to BufferCnt
 WriteCArray(DataFile, CoordBuffer(1))
end loop

-- Write out updated values for header. Must
-- reset file pointer to beginning of file.

DataFile.POS4 = 0
write DataFile, StartIntegerData, StartRealData, \
 StartCoordData
-- Initialization completed.
-- Now write out some values.

-- Write out a buffer full random integer values
-- starting after integer value 47.

loop I = 1 to IntegerBuffer(1).SIZE
 IntegerBuffer(I) = integer(Rnd()*10.0)
end loop

DataOffset = 47 * integer4(IntegerSize)
DataFile.POS4 = StartIntegerData + DataOffset

WriteIArray(DataFile, IntegerBuffer(1))

-- Write out a buffer full random real values
-- starting after real value 150.

loop I = 1 to RealBuffer(1).SIZE
 RealBuffer(I) = Rnd()
end loop

DataOffset = 150 * integer4(RealSize)
DataPile.POS4 = StartRealData + DataOffset

WriteRArray(DataFile, RealBuffer(1))

-- Write out a buffer full random coord values
-- starting after coord value 10.

4-277 Statements and Intrinsics

Statements and Intrinsics

loop I = 1 to CoordBuffer(1).SIZE
 CoordBuffer(I).X = (Rnd() * 10.0) * real(I)
 CoordBuffer(I).Y = (Rnd() * 10.0) * real(I)
 CoordBuffer(I).Z = (Rnd() * 10.0) * real(I)
end loop

DataOffset = 10 * integer4(CoordSize)
DataFile.POS4 = StartCoordData + DataOffset

WriteCArray(DataFile, CoordBuffer(1))

close DataFile

end proc
--- --

4-278 UPL Revision 6.0

