Personal Designer

User Programming Language

(UPL)

Revision 6.0

User Reference Guide

Chapter 4

Statements and Intrinsics

Statements and Intrinsics

Abs

4-5

DigStr

4-51

Accept

4-6

DirFn

4-52

AccessCode

4-11

DiskFree

4-55

ACos

4-14

Display

4-56

AddFnExt

4-15

DOS

4-58

Ang3P

4-16

Draw

4-59

ASCII

4-17

DrawText

4-60

ASin

4-18

Dsubrec

4-61

AskModifiers

4-19

Echo

4-62

Asmlnt

4-20

EntlntOf

4-63

Assignment

4-21

EntMask

4-65

ATan

4-23

EntPntOn

4-67

ATan2

4-24

EnvVar

4-69

AWinClear

4-25

Erase

4-70

BigMibList

4-26

Exist

4-72

Boolean

4-28

Exit

4-73

Boolean

4-29

Extract

4-75

Char

4-30

File

4-76

Clear

4-31

FillPoly

4-77

Close

4-32

FindFn

4-79

CntrIToNum

4-33

FindMenu

4-81

$CodeSize

4-34

FindProp

4-82

Const

4-35

Flushlnput

4-84

Coord

4-37

Func

4-85

Coord

4-39

GetBit

4-87

Cos

4-40

GetC

4-88

Date

4-41

GetCPL

4-89

DefineAW

4-42

GetCur

4-90

DefineModifier

4-45

GetDig

4-91

DegRad

4-48

GetEnd

4-92

Delete

4-49

GetEnt

4-93

4-2

Statements and Intrinsics

GetHelp
4‑95
MapMV
4‑142

GetKbdChar

4‑96

MapTo

4‑143

GetLayer

4‑97

MapTT

4‑145

GetMenulnfo

4‑98

MapVM

4‑146

GetModifier

4‑99

Mat3P

4‑147

GetSerialNum

4‑100

Max

4‑148

GetTagField

4‑101

MemAvail

4‑149

GetView

4‑102

MenuCmd

4‑150

GoTo

4‑103

MibTag

4‑151

Group

4‑104

Min

4‑152

GText

4‑106

MirEnt

4‑153

GWinClear

4‑108

MirEntCopy

4‑154

HilightEnt

4‑109

MirPnt

4‑155

HilightMenu

4‑110

Modl

4‑156

IDiskFree

4‑111

ModI4

4‑157

If ‑ Then ‑ Else ‑ EndIf
4‑112

Modify

4‑158

$lnclude

4‑115

ModR

4‑163

Index

4‑116

MouseInp

4‑164

InputStr

4‑117

MovEnt

4‑165

Insert

4‑118

MovEntCopy

4‑166

Integer

4‑123

NullTransform

4‑167

Integer

4‑124

NumToCntrl

4‑168

Integer4

4‑125

Open

4‑169

Integer4

4‑127

Pagelnfo

4‑172

LastDig

4‑128

Pi

4‑174

LinlntOf

4‑129

PixToRowCol

4‑175

Ln

4‑130

PntPrp

4‑176

Log

4‑131

PntPrpV

4‑177

Loop‑End Loop

4‑132

PolyArea

4‑178

Map2Px

4‑134

PolyWin

4‑179

Map2PxN

4‑135

Print

4‑180

MapCPLM

4‑136

Proc

4‑182

MapFrom

4‑137

Process

4‑184

MaPix2

4‑139

Product

4‑185

MaPix2N

4‑140

PutCur

4‑187

MapMCPL

4‑141

RadDeg

4‑188

4‑3

Statements and Intrinsics

Read

4‑189

ReadCArray,

Size4

4‑229

ReadlArray,

Sleep

4‑230

ReadRArray

4‑195

String

4‑232

Real

4‑200

String

4‑234

Real

4‑202

StrWide

4‑236

Return (for Functions)
4‑203

SqRt

4‑238

Return(for Procedures)
4‑204

SysVarI

4‑239

RmvChr

4‑205

SysVarI4

4‑244

Rnd

4‑206

SysVarR

4‑245

RotEnt

4‑207

SysVarS

4‑248

RotEntCopy

4‑208

Tan

4‑250

RotMat

4‑209

TagMib

4‑251

RotPnt

4‑210

TextColor

4‑252

RowColAW

4‑211

Time

4‑253

RowColToPix

4‑212

Transpose

4‑254

RpntEnt

4‑213

TwoPi

4‑255

SclEnt

4‑214

UpperCase

4‑256

SclEntCopy

4‑215

VCross

4‑257

Send

4‑216

VDot

4‑258

SetBit

4‑219

Verify

4‑259

SetHelp

4‑220

VLen

4‑265

SetLayer

4‑222

Vunit

4‑266

SetMenuInfo

4‑223

Window

4‑267

SetTagField

4‑225

Write

4‑269

ShadeColor

4‑226

WriteCArray,

Sin

4‑227

WritelArray,

Size

4‑228

WriteRArray

4‑273

4-4
Statements and Intrinsics

Abs

Type

Intrinsic Function
Arithmetic

Purpose

Converts an integer, integer4 or real expression to its absolute value. This

function returns an integer, integer4 or real value, depending on the input.

Syntax

Abs(expr)

Parameters

expr:
Integer, integer4 or real expression (input)

Specifies the integer or real expression to convert.

4‑5
Statements and Intrinsics

Statements and Intrinsics

Accept

Type

Statement
Input/Output (Window)

Purpose

Allows the user to input numerical, coordinate, or string data and assign it

to a given variable. You can qualify the data by selecting keywords and

expressions.

Syntax

Accept var dataqual(expr,...),...

Keyword modifiers

var:
An integer, integer4, real, coordinate, or string variable. The

input data is returned in the var variable. The data type declared

for var determines the type of data the program can accept.

When the program is run, the data returned in var will be

echoed in different ways, depending on the data type of var.

When var is integer, integer4, real, or string, the input data is

echoed to the ACCEPT window, which is the command

window by default. Use the AccptWin systern variable to

change the ACCEPT window. See DefineAW and Appendix

B, "System Variabies," for more information.

When the ENTANY and ENTLIST keywords are selected,

the user must digitize an entity in the graphics window. This

is echoed by highlighting the entity. In this case, var is

declared as an integer4, which is an exception to the rule

noted above.

When var is declared as a coordinate variable, the user must

digitize a location in the graphics window. This is echoed by

a digitizing mark, which is the small x in the window. The

user cannot enter coordinates through the keyboard, tablet,

or on‑screen menus‑see GetDig for more information. The

value returned in var is relative to the currently selected

view rather than model space.

4‑6 UPL Revision 6.0

Statements and Intrinsics

The ASCII value of the last character input into an Accept

statement is automatically placed in the system variable

LastChar. For more information about system variables,

refer to Appendix B, "System Variables."

dataqual:
Optional keyword. These keywords allow you to qualify the

data to be accepted. The keywords must be separated by

commas or spaces, and can be given in any order. Refer to

the tabie below to see which keywords can be used with the

different variable types.

Box(cexpr1, cexpr2) Coordinate

Limits acceptable digitized points to the inside of the box

specified by cexpr1 and cexpr2. These are the lower left and

upper right corners of the box. Coordinate values are

interpreted as the currently selected view space coordinates.

Entany
Integer4

Allows selection of entities by digitizing in the graphics

window. Entany returns an MIB number for the entity you

digitize. This MIB number can then be used in the database

statements and the database access intrinsic procedures and

functions. See Chapter 3, Functional Listing of Statements

and Intrinsics for more information.

Entlist(i4expr1, i4array(iexpr2)) Integer4

Allows selection of specific entities by digitizing in the

graphics window. Only the entities with MIB numbers

specified in the i4array parameter may be selected; i4array

must be declared as an integer array with at least i4expr1

elements. Replace iexpr2 with the first element that is to be

checked in i4array. When the program is run. if any entity is

picked which is not in the list i4array, the system sounds a

beep and then waits for the user to select the next entity.

Otherwise, the MIB number of the selected entity is

returned. This MIB number can then be used in the database

statements and the database access intrinsic procedures and

functions. See Chapter 3, Functional Listing of Statements

and Intrinsics.

4‑7
Statements and Intrinsics

Statements and Intrinsics

Exact(sexpr)
 String

Accepts the exact sequence of characters given in the string

expression, up to 250 characters. When you use this

keyword, no other keywords can be given.

You can use two consecutive Exact keywords. This allows

you to accept an answer choice such as "yes" and "no." lt

also allows you to specify the same sexpr twice‑in upper

and lower case‑so that the program can be run with the

CAPS lock key on or off. lf the user types a space, the next

character in the string expression is automatically accepted;

this feature is useful for writing tutorials. lf the user types a

character that is not in the expression, the system sounds a

beep and then waits for the next character to be entered.

In(sexpr)
String

Each character entered must be one of the characters

specified in a string expression up to 100 characters. lf the

user types a character that is not in the expression, the

system sounds a beep and then waits for the next character to

be entered.

Last(sexpr)
 Any Type

Speeifies the character(s) that will end data input. Input is

terrninated when the user enters any of the charaeters listed

in sexpr. Note that the terminating character is not put in var;

rather the system variable LastChar is assigned the ASCII

value of the last character entered. The sexpr string may

contain a maximum of 100 characters.

Macro(iexpr) Integer

Designates the keyboard macro set to be used by the Accept

statement. Keyboard macro sets define key assignments for

the keyboard. If the iexpr macro set is not found, the

program will use macro set one. Refer to the PDMAC.DEF

file in the Personal Designer directory for a description of

keyboard macro sets.

4‑8
UPL Revision 6.0

Statements and Intrinsics

Max(sexpr)
String

Accepts only characters whose ASCII value is less than or

equal to the first character specified in the string expression.

The string expression may contain a maximum of 100

characters.

Min(sexpr) String

Accepts only characters whose ASCII value is greater than

or equal to the first character specified in the string

expression. The string expression may contain a maximum

of 100 characters.

Newline Any Type

Starts a new line
in the Accept window after data is input.

Data input after this statement will be echoed on this new

line. All prompts output after this statement will also be

output on the new line.

Note that the Print, Display, and Send windows default to the command window. The output from these windows will also appear on the new line if their system variables have not been changed.

Prompt(sexpr) Any Type

Before data is accepted, the program prints sexpr in the Accept window to prompt the user for input. The string may contain a maximum of 500 characters.

Size(sexpr)
String

Limits the number of characters the user can enter.

Examples

ACCEPT S1 SIZE(1), IN(“ABCDEPQ“)

ACCEPT X PROMPT("Input X dimension") NEWLINE

ACCEPT S1 SIZE(1), MIN("A"), MAX("Z")\

 Prompt ('Enter a letter of the alphabet')

4-9
Statements and Intrinsics

Statements and Intrinsics

‑‑‑

-- The following program a displalys a menu and

-- then prompts the user to enter a one‑character

-- menu choice. only one of the letters in the

-- menu is accepted. The program will not continue

-- until one of them is entered.

proc main

string S1:1

real X

integer Num

display

Menu:

(A) Open Part

(B) Draw B size border

(C) Draw C size border

(D) Draw D size border

(E) Draw E size border

(P) Print text file

(Q) Quit

$

accept S1 in('ABCEDPQ') prompt('Choice: ´)\

newline

--
code to execute menu choices goes here

end proc

--

--

--
This program demonstrates an ACCEPT statement

--
using error checking on input.

proc main

integer num

loop

accept num prompt('Enter number (1‑10): ´)

exit when (num => 1) and (num <= 10)

print

print 'Number out of range. Try again.'

end
loop

end proc

‑‑

4-10
UPL Revision 6.0

Statements and Intrinsics

AccessCode

Type

Intrinsic Function
Operating System

Purpose

Returns a unique access code when given a key and a serial number.

AccessCode provides a method for UPL program developers to protect

their programs from unauthorized use. This function returns a

32‑character string which contains only uppercase letters.

Syntax

AccessCode(keystr, serialstr)

Parameters

keystr:
String expression of 32 characters (input)

This parameter specifies the key used to make the access

code. Only the first 32 characters in the string will be used.

The string can be shorter, however, it is recommended that it

be at least 10 characters in length. The keystr parameter can

contain any characters between the ASCII values 32 (space),

and 126 (~).

serialstr:
String expression (input)

This specifies the six‑digit serial number. On DOS systems

it is the Computervision guard box number. On UNIX

workstations, it may be the hostid or a portion of the

Ethemet address. The serial number can be retrieved using

the GetSerialNum intrinsic function.

AccessCode protects programs in the following way:

1 .
The vendor of the UPL program creates the keystring, which is known only to him.

2.
When the UPL program is installed, the user provides the vendor with the number of his Computervision guard box.

3.
The vendor creates a program that uses this routine, the box number, and the keystring to generate the user code. He returns this code to the user who puts it in a operating system (DOS or UNIX) environment

variable or the CVOPTION.FIL file.

4‑11
Statements and Intrinsics

Statements and Intrinsics

4.
The program should contain a series of statements which test the user code. lf the test fails, the program should give an error message and abort. See the example below.

Examples

‑‑‑

-- This program demonstrates how to use the

-- AccessCode routine to protect your software.

-- It contains two functions. The first one uses

-- an environment variable to hold the User Code.

-- The second one uses the file CVOPTION.FIL.

-- Either method may be used.

func CheckCodesEnvVar return Boolean

string KeyStr:32

string UserCode:32

KeyStr = 'This is my keystring'

EnvVar('USERCODE', UserCode)

if UserCode <> AccessCode(KeyStr,\

GetSerialNum()) then

print 'invalid guard box or access code'

return False

else

return True

end if

end func

func CheckCodesCVOpt return Boolean

string KeyStr:32

string UserCode:32

string AccCode:32

file OptFile

4‑12
UPL Revision 6.0

Statements and Intrinsics

KeyStr = 'This is my keystring'

AccCode = AccessCode(KeyStr, GetSerialNum())

open OptFile, '\cvoption.fil'

loop

read OptFile, UserCode

exit when OptFile.EOF

if UserCode = AccCode then

return True

end if

end loop

print 'invalid guard box or access code'

return False

end func

proc main

If Not CheckCodesEnvVar() then

return

endif

If Not CheckCodesCVOpt() then

return

endif

end proc

‑‑‑

-- This program demonstrates how to generate a

-- User Code to put in an enviro=ent variable

-- or the file, CVOPTION.FIL

proc main

string SerialNumber:6

string KeyString:32

accept SerialNumber last('#13##3#') size(6)\

prompt('Enter the box/host id number: ') \

newline

return when LastChar = 3

accept KeyString last('#13##3#') size(32) \

prompt('Enter your key string: ')

newline

return when LastChar = 3

print 'The User Code for box or host id ',

print SerialNumber,': '

print AccessCode(KeyString, SerialNumber)

end proc

‑‑‑

4‑13
Statements and Intrinsics

Statements and Intrinsics

ACos

Type

Intrinsic Function
Trigonometric

Purpose

Returns the arccosine of a real expression. This function returns a real

value in radians.

Syntax

ACos(rexpr)

Parameters

rexpr:
Real expression (input)

This parameter specifies the real expression whose arccosine

is returned.

4‑14
UPL Revision 6.0

Statements and Intrinsics

AddFnExt

Type

Intrinsic Procedure
Operating System

Purpose

Adds an extension to a file name.

Syntax

AddFnExt(filename, ext, iopt)

Parameters

filename: String variable (input/output)

On input, this parameter specifies a file name. On output, the

new file name is returned in this variable.

ext:
String expression of 3 characters (input/output)

This parameter specifies the file name extension that is

added to filename. Only the first three characters are used.

NOTE: Do not use a period in the extension.

iopt:
Integer expression (input)

The iopt parameter specifies the conditions under which ext

is added to the filename parameter.

Values are:

0
Tells the program to add ext filename only if it

does not already have an extension.

1
Tells the system to replace the existing extension

with the one specified in the ext parameter.

Example

AddFnExt(FN, 'DAT', 1)

4‑15
Statements and Intrinsics

Statements and Intrinsics

Ang3P

Type

Intrinsic Function
Geometric

Purpose

Returns the angle between three points in three‑dimensional space. This is

the smaller of two angles formed by the two imaginary lines which

connect the origin with the other two points. lt will always be less than pi

radians. The returned real value is in radians.

Syntax

Ang3P(pnt1, pnt2, pnt3)

Parameters

Pnt1:
Coordinate expression (input)

This parameter specifies the endpoint of the first imaginary

line.

pnt2:
Coordinate expression (input)

This parameter specifies the vertex point of the two

imaginary lines.

pnt3:
Coordinate expression (input)

This specifies the endpoint of the second imaginary line.

Example

A1 = Ang3P(C1, ORG1, C2)

4‑16
UPL Revision 6.0

Statements and Intrinsics

ASCII

Type

Intrinsic Function
Data Conversion

Purpose

Returns the ASCII value of the first character in a string. This function

returns an integer.

Syntax

ASCII(sexpr)

Parameters

sexpr:
String expression (input)

This parameter specifies the string whose ASCII value is

returned.

4‑17
Statements and Intrinsics

Statements and Intrinsics

ASin

Type

Intrinsic Function
Trigonometric

Purpose

Returns the arcsine of a real expression. This function returns a real value in radians.

Syntax

ASin(rexpr)

Parameters

rexpr:
Real expression (input)

This parameter specifies the real expression whose arcsine is

returned.

4‑18
UPL Revision 6.0

Statements and Intrinsics

AskModifiers

Type

Intrinsic Procedure
User Interface

Purpose

Allows your UPL program to accept input in the modifier format used by Personal Designer commands. Transfers controi of the UPL program to the Personal Designer modifier processor which accepts modifiers and values from the user. To exit the modifier processor, the user must type a colon, carriage return, or control C. This character will then be stored in the LastChar system variable. See the LastChar system variable, Appendix B, "System Variables."

When using AskModifiers, the modifier processor behaves the same way as it would with a Personal Designer command. For example, the modifier processor will only allow legal modifiers and context sensitive help is available. See Appendix H, "Writing Personal Designer Commands," and DefineModifier and GetModifier for more information.

Syntax

AskModifiers(modset)

Parameters

modset:
Integer expression (input)

This parameter specifies the modifier index number of the

modifier set to use. Set modset to zero to use the modifiers

you created with the DefineModifier procedure. Any other

number you input will use Personal Designer's modifier

table. See Appendix H, "Writing Personal Designer

Commands," for more information.

Example

AskModifiers(0)

4‑19
Statements and Intrinsics

Statements and Intrinsics

Asmlnt

Type

Intrinsic procedure
Operating System

Purpose

Performs a DOS software interrupt. Allows UPL programs to interface

with assembly language programs or the DOS operating system.

Syntax

Asmlnt(IntNo,RegData())

Parameters

IntNo:
Integer expression (input)

Intel interrupt number to execute (0 to 255)

RegData
Integer array of nine elements

RegData(1) = AX register

RegData(2) = BX register

RegData(3) = CX register

RegData(4) = DX register

RegData(5) = SI register

RegData(6) = DI register

RegData(7) = DS register

RegData(8) = ES register

RegData(9) = CPU flags

Examples

Regs(1) = 12288
‑‑AH = 30h, AL = 00h

AsmInt(33, Regs(1))
‑‑DOS int21h, get DOS version

number

4‑20
UPL Revision 6.0

Statements and Intrinsics

Assignment

Type

Statement
Assignment

Purpose

Gives a value to a variable, variable attribute, or array element.

Syntax

var = expr

where:

var:
Name of the variable to assign a value to. Variables of file

type may not be assigned; however, file attribute variables

may be assigned.

expr:
Expression of the same data type as var.

NOTE: expr must be the same data type as var. Use the data type conversion intrinsic functions to convert expr to the correct data

type.

4‑21
Statements and Intrinsics

Statements and Intrinsics

Example

‑‑

-- This program demonstrates some of the many

-- different forms an assignment may take.

PROC MAIN

INTEGER I(10), J, PTR(20)

REAL R, X, Y, Z, RR(15), THETA

STRING S1:80, S2:80

BOOLEAN B1, B2

COORD C1, C2, C

FILE F1

B1 = TRUE

S1 = "BEGIN" + S2 + "END"

R = X**2.0+5.0*Y/(4.0+Z)

I(2)=10

B2=FALSE

B1=NOT B1 OR B2

C.X=2.69

C=[4.0,7.93,‑4.68]‑C2

C=C1+C2

C.Z=‑10.2

RR(J/3+1)=SIN(DEG_RAD(THETA))/4.5

X=C.Y/Z**2.0

F1.POSITION=PTR(J)

F1.POSITION=F1.POSITION+10

R=REAL(J)+2.5+REAL(5)

END PROC

4‑22
UPL Revision 6.0

Statements and Intrinsics

ATan

Type

Intrinsic Function
Trigonometric

Purpose

Returns the arctangent of a real expression. This function returns a real

value in radians.

Syntax

ATan(rexpr)

Parameters

rexpr:
Real expression (input)

This parameter specifies the real expression whose

arctangent is returned.

4‑23
Statements and Intrinsics

Statements and Intrinsics

ATan2

Type

Intrinsic Function
Trigonometric

Purpose

Returns the arctangent of the r11r2 (or sin/cos) parameters. This function

will produce valid results even if r2 is zero. lt returns a real value in

radians.

Syntax

ATan2(r1, r2)

Parameters

r1:
Real expression (input)

This parameter specifies the sine of the angle.

r2:
Real expression (input)

This parameter specifies the cosine of the angle.

4-24
UPL Revision 6.0

Statements and Intrinsics

AWinClear

Type

Intrinsic Procedure
Input/Output (Window)

Purpose

Clears the specified alphanumeric window with the currently defined

background color for that window number. The cursor is reset to the upper

left corner of the window. See DefineAW for more information.

Syntax

AWinClear(iwin)

Parameters
iwin:
Integer expression (input)

Specifies the alpha window number to be cleared. Values are

1 through 20.

Example
‑‑ The following example clears alphanumeric window

‑‑ 11,the message window. Use the CLEAR statement

‑‑ or GWinClear to clear the graphics window.

AWinClear(11)

4‑25
Statements and Intrinsics

Statements and Intrinsics

BigMibList

Type

Intrinsic Function
User Interface

Purpose

Returns the integer4 Master Index Block (MIB) number of a digitized

entity. BigMibList must be used with the GetEnt procedure. BigMibList

extends the capability of GetEnt. GetEnt returns a speeific number of

digitized entities, whereas BigMibList allows GetEnt to return an

unlimited number of entities. A call to BigMibList is equivalent to

accessing the miblist parameter in the GetEnt procedure.

Before you use BigMibList, make a call to GetEnt with parameters set as

described below:

maxmib:
‑1

miblist:
a dummy (one element) integer4 array

nent:
an integer4 variable

iend:
an integer variable

lf you want to insert a Send statement between calls to BigMibList and

GetEnt, or between successive calls to BigMibList, make sure the Send

statement does not invoke Personal Designer commands that select

entities.

Syntax

BigMibList(ient)

Parameters

ient:
Integer4 expression (input)

This parameter specifies a position in the internal entity list.

This position holds the MIB number of the next entity

selected by the GetEnt procedure.

The value of ient should not be greater than the nent value

returned in the previous call to GetEnt. lf ient is greater than

nent, the returned value will be invalid.

4-26
UPL Revision 6.0

Statements and Intrinsics

Example

‑‑‑

‑‑ The following example shows how BigMibList is

-- used with GetEnt. See the GetEnt example which

-- prompts the user for entities without using

‑‑ BigMibList. Note that the BigMibList example can

‑‑ access an unlimited number of entities,

‑‑ whereas GetEnt does not:

proc main

integer4 NEnt, DummyMIBList(1), Mib, I

integer Iend, Ierr

GetEnt(‑1, NEnt, DummyMIBList(1), Iend)

print ´you digged the following entities:´,

Loop I = 1 to NEnt

Mib = BigMibList(I)

print Mib

End Loop

RpntEnt(DummyMIBList(1),0,Ierr)

end proc

4‑27
Statements and Intrinsics

Statements and Intrinsics

Boolean

Type

Statement
Declaration

Purpose

Declares the name, data type, aggregate type, and initial value of a

Boolean variable. An initial value is optional. Array variables must be

declared with their maximum subscripts.

Variables of Boolean data type contain logical values of either true or false.

Syntax

Boolean bvarname = bconst 1 bvarname(iconst,...)....

Keyword modifiers

bvarname:
Name of the Boolean variable. Only the first 16 characters

are used.

bconst:
Optional initial value for a Boolean scalar variable. This

value must be a literal or named Boolean constant. If the

variable is declared in the Group section, it will be set to this

value once at the beginning of the program. lf the variable is

declared in a procedure or function, it will be set to this

value each time the procedure or function is called.

iconst:
Array subscripts. These declare the variable to have

aggregate type array. Up to five subscripts may be declared.

The subseripts must be enclosed in parentheses. Array

variables may not be given an initial value.

All declaration statements must occur after the Proc, Func, and Group statements. They must appear before any other type of statements inside a procedure or function and are the only statements allowed inside the Group section. For more information, see Chapter 2, Program Structure, and

Appendix E, "Internal Data Format."

Examples

Boolean Done = False, BoolArr(10)

Boolean ErrorOccured, TimeOut

Boolean WaitFor = TRUE

4‑28
UPL Revision 6.0

Statements and Intrinsics

Boolean

Type

Intrinsic Function
Data Conversion

Purpose

Converts an integer, real, or string expression to a Boolean value.

Syntax

Boolean(expr)

Parameters

expr:
Integer, real, or string expression (input)

This parameter specifies the integer, real, or string

expression to convert.

For Integers

= 0: false

<> 0: true

For Reals

= 0: false

<> 0: true

For strings

True if the first character is a "T," otherwise false.

4‑29
Statements and Intrinsics

Statements and Intrinsics

Char

Type

Intrinsic Function
Data Conversion

Purpose

Returns a one‑character string which has the ASCII value of an integer

expression.

Syntax

Char(iexpr)

Parameters

iexpr:
String expression of 1 character (input)

This parameter specifies the integer expression to be

converted to an ASCII character. See Appendix F, "ASCII

Character Set," for more information.

4‑30
UPL Revision 6.0

Statements and Intrinsics

Clear

Type

Statement
Input/Output (Window)

Purpose

Clears a window.

Syntax

Clear iexpr

Keyword modifiers

iexpr:
Optional expression which specifies the window number you

want to clear. lf no iexpr is given, all windows are cleared. If

iexpr is 11, the graphics window is cleared. To clear the

alpha/text window number 11, use a ‑11 or use AWinClear.

Values 1 through 10 clear the corresponding UPL windows.

To clear windows 11 through 20, use the corresponding

negative values, ‑1 through ‑10. See DefineAW for a list of

window number assignments.

Examples

CLEAR

CLEAR 2

CLEAR PRINT_WIN

4‑31
Statements and Intrinsics

Statements and Intrinsics

Close

Type

Statement
Input/Output (File)

Purpose

Closes a file that has been opened with the Open statement.

Syntax

Close flvar

Keyword modifiers

flvar:
File variable.

After you close a file, you can use the file and file variable again in

another Open statement. If you do not close a file before exiting a

function or procedure where you declared the file variable, the file closes automatically.

Example

CLOSE DATA_FL

4‑32
UPL Revision 6.0

Statements and Intrinsics

CntrIToNum

Type

Intrinsic Function
Data Conversion

Purpose

Converts any non‑printabie ASCII characters in a string to the format:

#ascii num# and returns the new string. This is the same form used by

Personal Designer and the UPL compiler. See NumToCntrl for more

information.

The UPL program may encounter non‑printable ASCII characters when

reading from a file created by another prograrn. With many editors, you

can create ASCII characters by holding down the Ctrl key and typing the

character or by holding down the alt key and typing the numeric ASCII

value.

Syntax

CntrlToNum(str)

Parameters

str:
String expression (input)

This parameter specifies the characters in a string to be

converted to ASCII. Non‑printable ASCII characters have

decimal values less than 32 and greater than 159. See

Appendix F, "ASCII Character Set," for a compiete list of

ASCII characters used by the system.

Example

NewStr = CntrlToNum(0ldStr)

4‑33
Statements and Intrinsics

Statements and Intrinsics

$CodeSize

Type

Statement
Compiler Directive

Purpose

Sets the number of bytes of UPL code that will reside in virtual memory.

Syntax

$Codesize iconst

Keyword modifters

iconst:
Number of bytes you want in fast 10. This directive may

occur anywhere in the UPL program. lf more than one

$CodeSize directive is specified, the last one is used. The

default is the smaller of: a) the actual size of the UCD file or

b) the amount of virtual memory set aside for UPL. The

latter value is specified using the Configurator.

Use this directive only if you are using the Process statement to invoke

another UPL program which is larger than the program you are writing. In

this case, set $CodeSize to the larger of the two.

Example

$CODESIZE 10000

4‑34
UPL Revision 6.0

Statements and Intrinsics

Const

Type

Statement
Declaration

Purpose

Declares the name, data type, and value of a named constant. The data

types are the same for variables except that a file may not be a constant.

Literal constants rnust also be scalars; there are no array constants.

A named constant may appear anywhere in a program that a literal

constant does.

Syntax

Const datatype constname = const, constname = const....

Keyword modifiers

datatype:
Data type of the constant. This may be Integer, Integer4,

Real, Coord, Boolean, or String.

constname:
Name of the constant. Only the first 16 characters are used.

const:
Value of the constant. This is not optional. The value must be

a literal constant with the data type given by datatype.

Regardless of whether the constant is declared in the Group

section, a procedure, or a function, it will always be set to

this value once at the beginning of the program.

All declaration statements must occur after the Proc, Fune, and Group statements. They must appear before any other type of statements inside a procedure or function and are the only statements allowed inside the

Group section.

For more information, see Chapter 2, Program Structure, and Appendix E, "Internal Data Format."

4-35
Statements and Intrinsics

Statements and Intrinsics

Examples

Const Integer MaxSize = 10, MaxInt = 32767

Const Integer Biggest = 499

Const Real Tolerance = 0.0001, Diam = 2.50

Const Coord Origin = []

Const Coord UnitVec = [0.57735, 0.57735, 0.57735]

Const Boolean Yes = True, No = False

Const String Title = "Wigit Design #345x"

Const String Dots = “ “

4‑36
UPL Revision 6.0

Statements and Intrinsics

Coord

Type

Statement
Declaration

Purpose

Declares the name, data type, aggregate type and initial value of a

coordinate variable. An initial value is optional. Array variables must be

declared with their maximum subscripts.

Variables of coordinate data type are made up of three real components in

the range of ‑1.0E+38 to ‑1.0E‑37, 1.0E‑37 to 1.0E+38, and 0.0.

Syntax

Coord cvar= [constx, consty constz] | carray(iconst,...)....
Keyword modifters

cvar:
Declares the name of the coordinate variable. Only the first

16 characters are used.

constx:
Optional literal or named real constant. lt specifies the initial

value for the ".X" attribute of a coordinate scalar variable.

consty:
Optional literal or named real constant. lt specifies the initial

value for the ".Y" attribute of a coordinate scalar variable.

constz:
Optional literal or nameil real constant. lt specifies the initial

value for the ".Z" attribute of a coordinate scalar variable.

carray:
Declares the name of the coordinate array variable. Only the

first 16 charaeters are used.

iconst:
Array subscripts. These declare the variable to have

aggregate type array. Up to five subscripts may be declared.

The subscripts must be enclosed in parentheses. Array

variables may not be given an initial value.

lf the variable is declared in the Group section, it will be set

to these values once at the beginning of the program. If the

variable is declared in a procedure or function, it will be set

to these values each time the procedure or function is called.

4‑37 Statements and Intrinsics

Statements and Intrinsics

All declaration statements must occur after the Proc, Func, and Group

statements. They must appear before any other type of statements inside a procedure or function and are the only statements allowed inside the

Group section.

For more information, see Chapter 2, Program Structure, and Appendix E,

"Internal Data Format."

Examples

Coord EndPoint1, Endpoint2, Vertices(100)

Coord ThisPoint = [0.0,0.0,0.0]

Coord ThatPoint = [3.25,7.789,415.23]

4‑38
UPL Revision 6.0

Statements and Intrinsics

Coord

Type

Intrinsic Function
Data Conversion

Purpose

Converts three real expressions to a single coordinate value and returns

the value. You cannot use the [X, Y, Z] notation unless X, Y, and Z are

constants. This function allows you to convert the X, Y, and Z expressions

to one coordinate expression.

Syntax

Coord(x, y, z)

Parameters

x:
Real expression (input)

This parameter specifies the X component of the returned

coordinate value.

y:
Real expression (input)

This parameter specifies the Y component of the returned

coordinate value.

z:
Real expression (input)

This parameter specifies the Z component of the returned

coordinate value.

Examples

C = Coord(R, 3.5, ZVal/Rad+10.0)

C = C2 + Coord(X1, Y2*Fac, Sin(ZRad)/Sqrt(X1))

SEND "INS POINT:", \

DigStr(Coord(XI,Y2 + COS(THETA),0.0))

4‑39
Statements and Intrinsics

Statements and Intrinsics

Cos

Type

Intrinsic Function
Trigonometric

Purpose

Returns the cosine of a real expression. This function returns a real value

in radians.

Syntax

Cos(rexpr)

Parameters

rexpr:
Real expression (input)

This parameter specifies the real expression whose cosine is

returned.

4-40
UPL Revision 6.0

Statements and Intrinsics
Date

Type
Intrinsic Function
Systern Interface

Purpose
Returns the current system date in the format: MM/DD/YY. This function returns a string value (eight characters long).

Syntax
Date()
Parameters
The Date function has no parameters.

Example
Print "Today's date is", Date()

4‑41
Statements and Intrinsics

Statements and Intrinsics
DefineAW

Type
Intrinsic Procedure
Input/Output(Window)

Purpose
Defines or returns the characteristics of an alphanumeric window. This

procedure allows greater control of window parameters than the Window statement. See Chapter 3, Functional Listing of Statements and Intrinsics

under Window Input/Output, for more information.

Syntax
DefineAW(iwin, iboxl(1), bkg, page, sflag, priority)

Parameters
iwin:
Integer expression (input)

This parameter allows you to specify the alpha window, 1

through 20, to get infortnation about or to set parameters for.

lf iwin is greater than zero, the parameters given are used to

specify the characteristics of the specified window. lf iwin is

less than zero, the eurrent characteristics of the window are

returned in the parameters. See the list below for window

numbers and their definitions.

1
UPL window and command/prompt window

2‑10
UPL windows 2‑10.

11
Message window.

12
Warning message window.

13
Error message window.

14
X,Y coordinates of cursor location window.

15
Status window.

16
Help window.

17
General window to list data as fast as possible.

4-42
UPL Revision 6.0

Statements and Intrinsics

18
window for the Personal Designer DOS command

and the UPL DOS procedure; do not use.

ibox:
Integer array of 4 elements (input/output). This parameter

specifies and returns the location and size of the window in

screen pixel coordinates. See PixToRowCol and

RowColToPix for more information.

Array values are:.

ibox(1)
left pixel value.

ibox(2)
lower pixel value.

ibox(3)
right pixel value.

ibox(4)
upper pixel value.

ibkg:
Integer variable (input/output). This number specifies and

retums the background color of the window. See the

SELECT COLOR command in the Personal Designer and

microDRAFT Revision 6. 0 User Reference Guide for a

definition of color numbers.

page:
Integer variable (input/output)

This specifies and returns the graphics page that the window

is on. For alphanumeric windows, the page parameter

usually equals one. This parameter is dependent on the

graphics device driver.

sflag:
Integer variable (input/output)

This specifies and returns the autowrap flag. Values are:

0
disabies a line autowrap.

1
enabies a line autowrap.

priority:
Integer variable (input/output)

This parameter specifies and returns the priority of the

window; the greater the number, the higher the priority. The

window with the higher priority overwrites the window with

the lower priority. See Chapter 3, Functional Listing of

Statements and Intrinsics, for a definition of priorities.

4‑43
Statements and Intrinsics

Statements and Intrinsics
Example

This program demonstrates the use of DefineAW

proc main

integer awindow, corners(4), backgrnd

integer page, wrap, priority

awindow = 5

backgrnd = 2

page = 1

wrap = 1

priority = 20

corners(1) = 5

corners(2) = 20

corners(3) = 60

corners(4) = 25

RowColToPix(corners(1), page)

DefineAW(awindow, corners(1),backgrnd, page, \

wrap, priority)

AWinClear(awindow)

end proc

4‑44
UPL Revision 6.0

Statements and Intrinsics
DefineModifier

Type
Intrinsic Procedure
User Interface

Purpose

Allows your UPL program to accept input in the modifier format used by Personal Designer. The DefineModifier procedure is used with the AskModifiers and GetModifier procedures. DefineModifier defines all modifiers to be used and their initial values. Each set of modifiers can contain a maximum of 60 words. AskModifiers invokes the Personal Designer modifier processor to scan the modifiers input by the user. GetModifier returns the modifier values input by the user.

Syntax

DefineModifier(iword, word, type, selected, value, immediate)

Parameters

iword:
Integer expression (input)

This parameter specifies an integer expression to be assigned

to the modifier word. Set iword to zero if you want to clear

existing modifier words and insert new ones.

word:
String expression of 12 characters (input)

The word parameter specifies the modifier word. The

parameter has a 12 character maximum which can be

abbreviated in upper case. lf you abbreviate the word, the

user only needs to type the upper case letters to select the

modifier. For example, if you set a modifier called

TOLerance, the user only types TOL to select the word.

However, when the user enters a "?" to get a list of the

modifiers and their values, the system displays the whole

word.

4‑45
Statements and Intrinsics

Statements and Intrinsics
type:
String expression of 1 character (input)

This parameter specifies one letter. This letter defines the

data type of the modifier; and it also defines whether or not

the modifier is exclusive of other modifiers with the same

data type. lf a modifier is exclusive, the user can select only

one modifier out of many that have the same letter assigned

to it. There are four types of data: boolean, integer, real, and

string.

The following list of letters show which modifiers are

exclusive and non‑exclusive by data type:

A to H
Boolean, exclusive.

I
Integer non‑exclusive.

J to M
Integer, exclusive.

N
Boolean, non‑exclusive.

O to P
String, for file names, 64 characters maximum.

NOTE: type 0 and P ean only be used once in a

set of modifiers.

Q
String, for text, 1.000 characters maximum.

NOTE: type Q can only be used only

once in a set of modifiers.

R
Real, non‑exclusive.

S to V
Real, exclusive.

W to Z
Boolean, exclusive.

selected:
Boolean expression (input)

This parameter specifies whether the modifier is active by

default. For non‑exclusive modifiers, the selected parameter

is usually set to false. For exclusive modifiers, only one of

the modifiers with the same letter assignment is set to true.

value:
Real expression (input)

This parameter specifies the default value for real and

integer data. Integers must be converted to real numbers.

You cannot set a default value for 0, P and Q modifiers.

4‑46
UPL Revision 6.0

Statements and Intrinsics
immediate:
Integer expression (input)

This parameter specifies whether control should be passed

back to the calling routine immediately after this modifier

has been entered by the user. A non‑zero value returns

immediately. A zero value passes control to the next line in

the UPL program. The user is prompted for modifiers after

the AskModifiers call is made. Control flow continues to the

next line.

Example
‑‑‑--------

-- The following procedure shows how to set up

-- the modifiers for a command written in UPL

-- which uses the same modifiers as the Personal -- Designer command MEASURE MPROP.

proc DefineModifierValues

DefineModifier(0,''

,' ',False,0.0,0)

DefineModifier(1,'SIZE'
,'R',False,0.0,0)

DefineModifier(2,'DENSity'
,'S',True,1.0,0)

DefineModifier(3,'MASS'
,'S',False,1.0,0)

DefineModifier(4,'ADDPoint'
,'I',False,1.0,0)

DefineModifier(5,'ADDCplane'
,'I',False,7.0,0)

DefineModifier(6,'FILE'
,
'P',False,0.0,0)

DefineModifier(7,'PRECision'
,'I',False,5.0,0)

DefineModifier(8,'TOTalonly'
,'A',False,0.0,0)

DefineModifier(9,'ALL'
,
'A',True,0.0,0)

DefineModifier(10,'CHTolerance'
,'R',False,0.1,0)

DefineModifier(11,'TOLerance'
,'R',False,0.005,0)

DefineModifier(12,'BOundary'
,
'B',False,0.0,0)

DefineModifier(13,'NOBOundary'
,'B',True,0.0,0)

end proc

--

4‑47
Statements and Intrinsics

Statements and Intrinsics
DegRad

Type
Intrinsic Function
Data Conversion

Purpose
Converts a real expression frorn degrees to radians. It returns the real value.

Syntax
DegRad(rexpr)

Parameters
rexpr:
Real expression (input)

This parameter specifies the real expression to convert.

4‑48
UPL Revision 6.0

Statements and Intrinsics
Delete

Type
Statement
Input/Output (File)

Purpose
Deletes a file. Do not delete an open file.

Syntax
Delete filename

Keyword modifiers
filename:
String expression which gives the name of the file to be

deleted.

Example
DELETE "TEST.DRW"

4‑49
Statements and Intrinsics

Statements and Intrinsics
DigStr

Type
Intrinsic Function
Data Conversion

Purpose
Returns a string which represents the X, Y, Z coordinate data of any point in space. You can use DigStr to simplify the specification of coordinate data in the Send statement.

Note that DigStr adds a comma to the end of the text string being created. This is used by the GetData processor in Personal Designer to end coordinate input for that point. See the Personal Designer and microDRAFT Revision 6.0 UserReference Guide, Chapter 2 for more ififormation on Getdata.

Syntax
DigStr(pnt)

Parameters
pnt:
Coordinate expression (input)

This parameter specifies the coordinate value to be

converted to a string.

Example
C1 = [‑3.0,4.01 Send "ins lin:",DigStr([1.0,2.0,3.01),DigStr(C1)

This would send the following to the command processor:

ins lin: X1.0 Y2.0 Z3.0, X‑3.0 Y4.0 ZO.0,

4‑51
Statements and Intrinsics

Statements and Intrinsics
DirFn

Type
Intrinsic Procedure
Operating System

Purpose
Retrieves directory information about a DOS or UNIX file. All types of directory entries may be queried including directories, hidden files, and normal files.

Syntax
DirFn(filename, iatt, timestr, datestr rsize, flag)

Parameters
filename:
String variable of 64 characters (input/output)

The filename parameter specifies the file name that will be

searched for in the input mode; and the file name that will be

returned in the output mode. On input, include path names

and drive specifiers. On output, no path names or drive

specifiers will be returned with the name of the file. See the

flag parameter for more information.

iatt:
Integer variable (input/output)

On input, iatt specifies the file attributes you want to find.

On output, iatt returns the file attributes that were actually

found. Attribute values are:

0
normal file.

1
read only.

2
hidden file.

4
system file.

8
volume label.

16
subdirectory.

32
archived file.

4‑52
UPL Revision 6.0

Statements and Intrinsics
All other values of iatt represent a combination of the numbers above. For example, iatt = 7 is a read only, hidden system file. See your operating system manual for more information on files.

timestr:
String variable of 8 characters (input/output)

This parameter returns the time the file was last modified in

the following format: HH:MM:SS.

datestr
String variable of 8 characters (input/output)

This returns the date the file was last written in the following

format: MM/DD/YY.

rsize:
Real variable (input/output)

This parameter returns the number of bytes in the file. This

returns a real value, not an integer.

flag:
Integer variable (input/output)

On input, setflag = 1 to have the prograrn search for the first

matching file name. Setflag = 0 to search for the next

matching file name if a wildcard character was used.

On output, ifflag = 0, a file was found. If flag = 1, no

additional files could be found.

Examples
‑‑‑-

-- This example prints out a list of all EXE -- files in the current directory.

proc main

integer Flag, IAtt

string FN:64

string TimeStr:8, DateStr:8

real RSize

Flag = 1

FN = '*.EXE'

loop

Iatt = 0

DirFN(FN,IAtt,TimeStr,DateStr,RSize,Flag)

exit when Flag <> 0

print FN:‑14,DateStr:9,TimeStr:9,RSize:8:0

end
loop

end proc

‑‑

4‑53
Statements and Intrinsics

Statements and Intrinsics
‑‑

-- This example prints out a list of all

-- the files in the root directory.

proc main

integer Flag, IAtt

string FN:64 string TimeStr:8, DateStr:8

real RSize

Flag = 1

FN = '*.*'

loop

Iatt = 16

DirFN(FN,IAtt,TimeStr,DateStr,RSize,Flag)

exit when Flag <> 0

print FN:‑14,DateStr:9,TimeStr:9,RSize:8:0

end
loop

end proc

4‑54
UPL Revision 6.0

Statements and Intrinsics
DiskFree

Type
Intrinsic Function
Operating System

Purpose
The IDiskFree intrinsic is intended to supercede DiskFree. To obtain the number of free bytes as a long integer, use IDiskFree.

Returns the number of free bytes on the specified disk drive. DiskFree returns a real value, not an integer. Do not convert this result to an integer because the returned value may be greater than 32,767 bytes which will produce an incorrect result.

Syntax
DiskFree(idrive)

Parameters
idrive:
Integer expression (input)

This parameter specifies the drive you want to query. In the

table below, drive one starts with A and each successive

drive is matched with the next letter in the alphabet. lf you

do not have a drive B, drive C will still be matched with

number three. Values are:

0
current drive

1
A

2
B

3
C

etc.
etc.

Examples
DFree = Disk‑Free(3)

4‑55
Statements and Intrinsics

Statements and Intrinsics
Display

Type
Statement
Input/Output (Window)

Purpose
Writes a block of text to a window on the user's screen.

Syntax
Display

Text

$

Keyword modifiers

text:
Starts on the line following the Display statement and ends when a dollar sign is encountered. To use dollar signs in the text, key in two dollar signs to get one. Be sure to use only the dollar sign character to end the text.

The text is displayed in the Display window which is the command window by default. To change the display window, use the DispWin system variable to specify the window number. For more information, see Window and the DispWin variable in Appendix B, "System Variables."

4‑56
UPL Revision 6.0

Statements and Intrinsics
Example
DISPLAY

Welcome to the Tutorial

Main Menu

A) Getting started

B) Simple demonstration

C) How to insert new Geometry

Choose option ‑ $

ACCEPT STR IN(‑ABC‑) SIZE(1)

4‑57
Statements and Intrinsics

Statements and Intrinsics
DOS

Type

Intrinsic Procedure
Operating System

Purpose
Provides access to the native operating system on DOS systems. Currently supported operating systems are DOS and UNIX. The program can execute operating system level commands or escape to DOS temporarily. The DOS command specified in the cmdstring parameter is executed by the operating system if there is enough memory available.

Syntax
DOS(cmdstring)

Parameters
cmdstring:
String expression (input)

This parameter specifies the DOS command to be executed.

If you set the parameter to the null string, the system will

switch to the DOS window which is window 18 when the

program is run. Once in the DOS, the user can type in all

commands needed. To return control to the program, the user

must type the DOS command "Exit."

Examples
DOS('COPY'+FileName1+' '+FileName2) ‑‑Copies file.

DOS('')‑‑Switches to DOS level.

‑‑Creates the file DIRBAT which contains a

‑‑sorted list of all batch files.

DOS(´DIR *.BAT | SORT > DIRBAT´)

4‑58
UPL Revision 6.0

Statements and Intrinsics
Draw

Type

Intrinsic Procedure
Graphics

Purpose
Draws on the graphics screen without putting entities into the database.

Syntax
Draw(what, color, font, npnts, pnts(1))

Parameters
what:
Integer expression (input)

This parameter specifies what to draw. Values are:

1
Dot at each coordinate in the pnts parameter.

2
Line connecting each coordinate in pnts.

3
Boxes with lower left corner given by pnts(1) and

upper right corner given by pnts(2).

Add 100 to what to have a small x drawn at the first point.

Add 200 to what to have a small x drawn at the last point.

Add 300 to what to have a small x drawn at all points.

color:
Integer expression (input)

Specifies the color number. See SELECT COLOR in the

Personal Designer documentation for a list of colors.

>0
Draws the color on.

= 0
Turns the color off.

<0
Uses a complementary color.

font:
Integer expression (input)

This parameter specifies the line font to draw with. A

negative one uses the currently selected font.

npnts:
Integer expression (input)

This parameter specifies the number of points in the pnts

array. If what = 3, then each pair of points specifies the

opposite corners of a box.

pnts:
Coordinate array variable (input)

This specifies the array of view space coordinates.

4‑59
Statements and Intrinsics

Statements and Intrinsics
DrawText

Type
Intrinsic Procedure
Graphics

Purpose
Draws graphic text on the graphics screen. This text is not added to the drawing database.

Syntax
DrawText(str org, angle, hgt, wdt, color)

Parameters
str
String expression (input)

This parameter specifies the characters to draw. There is a

maximum of 500 characters.

0rg:
Coordinate expression (input)

This parameter specifies the view space origin to draw the

text at. The text is always drawn leftjustified.

angle:
Real expression (input)

This parameter specifies the angle in degrees (0 to 360) to

draw the text in.

hgt:
Real expression (input)

This parameter specifies the height in inches to draw the

character on the screen. This is independent of the drawing

scale.

wdt:
Real expression (input)

This parameter specifies the width in inches to draw the

character on the screen. This is independent of the drawing

scale.

color:
Integer expression (input)

This parameter specifies the color number to draw the text

with. Zero erases text. See the SELECT COLOR command

in the Personal Designer and microDRAFTRevision 6.0

User Reference Guide for a list of color numbers.

4‑60
UPL Revision 6.0

Statements and Intrinsics
Dsubrec

Type
Intrinsic Procedure
Database Access

Purpose
Deletes a specific subrecord from an entity.

Syntax
DSubrec(mib,occur,error,srtype)

Parameters
mib:
Integer4 expression (input) (integer4 expression in Rev, 5.0

or later);

This parameter specifies the MIB number of the entity from

which the subrecord will be deleted.

occur:
Integer expression (input)

Specifies which occurrence of the srtype subrecord will be

deleted. lt is used if the Part Data File (PDF) portion of the

entity record contains more than one srtype subrecord. lf the

PDF portion of the entity record does not have more than

one srtype subrecord, set the occurrence to one.

error:
Integer variable (output)

This parameter retums the error condition:

0
no errors.

1
an 10 error was found.

3
no srtype subrecord was found.

4
an invalid MIB number was given.

srlype:
String expression of 2 characters (input)

Specifies the type of subrecord to delete. If the parameter is

an empty string, the procedure will delete a subrecord of any

type found in the position specified by the parameter occur.

Example
DSubrec(mib(i),occur,ierr,dmtype)

4‑61
Statements and Intrinsics

Statements and Intrinsics
Echo

Type
Statement
Input/Output (Window)

Purpose
Controls the echoing of text and digitize marks from the Accept, Display, Print, and Send statements on your screen. Personal Designer commands are echoed in the command window; digitize marks are echoed in the graphics window.

Syntax
Echo On | Off All

Keyword modifiers
The Echo statement is initially set to On, which echoes commands and digitize marks.

If you select Off, digitize marks will be echoed, but not commands. All is an optional keyword; Off All inhibits all echoing. Off All is especially useful when executing commands with the Send statement.

Examples
ECHO ON

ECHO OFF

ECHO OFF ALL

4‑62
UPL Revision 6.0

Statements and Intrinsics
EntlntOf

Type
Intrinsic Procedure
Geometric

Purpose
Finds the intersecting point of two entities.

Syntax
EntlntOf(mibl, mib2, viewno, sends(1), digpnt, intpnt, error)

Parameters
mibl:
Integer4 expression (input)

This specifies the MIB number of the first entity.

mib2:
Integer4 expression (input)

Specifies the MIB number of the second entity.

viewno:
Integer expression (input)

This parameter specifies the view to locate the intersection

in. If the two entities appear to intersect, this is a view space

intersection. However, if the two entities really do intersect

in 3D space, this is referred to as a model space intersection.

Values are:

‑1
model space intersection (in any view).

0
view space intersection in the current view.

>0
view space intersection in a given view.

lf the view number cannot be found, the current view is

used.

sends:
Integer array of 2 elements (input/output)

This parameter is necessary if one of the possible

intersecting entities is a string entity. The parameter is

necessary because the string might represent a shape like a

spiral which may have many intersections with another

entity. lf no entities are strings, use a dummy array as a place

holder.

4‑63
Statements and Intrinsics

Statements and Intrinsics
The array elements specify the string vertex numbers to find the intersection for. You can use the iend parameter in the GetEnt procedure to determine which vertex is closest to the digitized point. The array returns the following values:

sends(1)
the vertex number for the mib1 entity.

sends(2)
the vertex number for the mib2 entity if the entity is also a string.

digpnt:
Coordinate expression (input)

This parameter specifies the intersecting reference point. If

two entities intersect in more than one place, the closest

intersecting point to digpnt will be the point returned in the

intpnt parameter.

intpnt:
Coordinate variable (input/output)

This parameter specifies the intersection point.

error:
Integer variable (input/output)

This parameter returns the error condition returned to the

user. Values returned are:

0
at least one intersecting point was found.

10
parallel lines were found. Depending on the view,

this could either indicate an infinite number of

intersecting points, (the lines occupy the same

space), or no intersection at all.

11
no intersection was found.

12
intersecting point cannot be determined for the

two entity types given.

Example
Ent_Int_Of(Mib1, Mib2, 7, SEnds(1), C1, Pnt, IErr)

4‑64
UPL Revision 6.0

Statements and Intrinsics
EntMask

Type
Intrinsic Procedure
User Interface

Purpose
Specifies the types of entities that can be accepted as input by GetDig, GetEnd, or GetEnt.

The first call to EntMask should be made with a value of zero to reset entity masking. The next call to EntMask with a value other than zero allows only that entity type to be accepted. Successive non‑zero calls add new entities to the list of acceptable entity types.

Syntax
EntMask(ienttype)

Parameters
ienttype:
Integer expression (input)

This parameter specifies the entity types that will be

accepted by the GetDig, GetEnd, and GetEnt procedures.

Values are:

0
resets parameter so that all entity types can be

picked.

1
adds Line entity type.

2
adds String entity type.

3
adds Arc entity type.

4
adds Text entity type.

5
adds Point entity type.

6
adds Linear Dimension entity type.

7
adds Label, Point Dimension entity type.

8
adds Radius Dimension entity type.

4‑65
Statements and Intrinsics

Statements and Intrinsics
9
adds Angular Dimension entity type.

10
adds Cross‑Hatching entity type.

11
adds Figures entity type.

12
adds Diameter Dimension entity type.

13
adds MView.

14
adds Ellipse entity type.

16
adds Curve entity type (Cpole).

17
adds Surface entity type (Spole).

18
adds Plane entity type.

30
adds NURB curve entity type.

31
adds NURB surface entity type.

35
adds 3‑D tool path entity type.

36
adds 2 1/2 D tool path entity type.

Example
‑‑‑

-- This example will only allow Line and

-- String entities to be picked by GetEnt.

proc main

integer endd

integer4 MibList(100), NEnt

EntMask(0)

EntMask(1)

EntMask(2)

GetEnt(100, NEnt, MibList(1), endd)

end proc

4‑66
UPL Revision 6.0

Statements and Intrinsics
EntPntOn

Type
Intrinsic Procedure
Geometric

Purpose
Determines the point on an entity which is closest to the point given by the digpnt parameter.

Syntax
EntPntOn(mib, send, digpnt, transform(1), onpnt, error)

Parameters
mib:
Integer4 expression (input)

This parameter specifies the MIB number of the entity to

find the point on.

send:
Integer expression (input)

If mib is a string entity, send specifies the segment to search

for the point. This parameter is necessary if the entity is a

string entity. The parameter is necessary because the string

may represent a shape like a spiral which may have many

points near the given point. Negative values cause

EntPntOn to find the actual point closest to digpnt on the

string. Positive values return a point which is the projection

of digpnt onto the send segment, even if that segment must

be extended in space to allow the projection. If no entities

are strings, use a zero as a place holder.

digpnt:
Coordinate expression (input)

The digpnt parameter specifies the proximity reference

point. The point on the entity which is closest to this point

becomes the onpnt parameter. This point is given in the

coordinate system defined by the transform parameter.

transform:
Real array of 15 elements (input/output)

This transfor7n specifies the view orientation used when

determining the closest point on the entity. When working in

model space, use the NullTransform procedure.

4‑67
Statements and Intrinsies

Statements and Intrinsics
onpnt:
Coordinate variable (input/output)

This returns the point which is on the given entity that is

closest to the digpnt parameter. lt is given in model space

coordinates.

error:
Integer variable (input/output)

This parameter specifies the following error condition:

0
no errors were found.

1
an 10 error was found.

2
there are not enough bytes to read (nbytes is too
big).

3
the subrecord was not found.

4
an invalid MIB number was given.

4‑68
UPL Revision 6.0

Statements and Intrinsics
EnvVar

Type
Intrinsic Procedure
Operating System

Purpose
Returns the value of a operating system (OS) environment variable. Currently supported operating systems are DOS and UNIX. Environment variabies can be set with the DOS or UNIX set command; refer to your operating system manual for more information.

Syntax
EnvVar(envvarname, envval)

Parameters
envvarname:
String expression (input)

This parameter specifies the OS environment variable name

to look for and return the value of

envval:
String variable (input/output)

This parameter retums the value of the environment variable.

lf envvarname is not found, envval is returned as an empty

string, EnvVal.Length = 0.

Example
Env Var("PATH", PathStr)

If PathStr = " " Then

print "no path name found"

Else

print "path = ",PathStr

End If

4‑69
Statements and Intrinsics

Statements and Intrinsics
Erase

Type
Statement
Database Access

Purpose
Removes an existing entity from the drawing database.

Syntax
Erase entloc Rpnt(bexpr)

Keyword modifiers
entloc:
Specifies which entity to delete from the database. You must

use an entloc keyword in this statement. The entloc keyword

can be used in two ways; the one you use depends on

whether you know the MIB number of the entity to be

deleted.

If you know the entity's MIB number, use this form for

entloc:

Entld(i4expr):

Replace i4expr with an integer4 expression for the MIB

number. You may find the MIB number by using the Verify

statement or by using intrinsic functions. Some intrinsics,

such as GetEnt, allow the user to digitize entities in the

graphics window. Their MIB numbers are then available to

the program. Other functions, such as FindProp and

TagMib, will return an MIB number when given

non‑graphical information such as the entity's properties or

tags. lt is recommended that the MIB number be obtained

before using the Erase statement.

lf you do not know the entity's MIB number, you may use

one of the following keywords for entloc:

First:

Deletes the first entity in the database.

4‑70
UPL Revision 6.0

Statements and Intrinsics

Next:

Deletes the next entity in the database. This keyword allows the program to step through the database sequentially and delete each entity. Each time an Erase Next statement is executed, the next entity in the database is deleted. An Erase Next statement may also be used after an Erase

Entld(iexpr) statement. The database search will then start at the iexpr entity instead of the first entity.

Last:
Deletes the last entity in the database. This keyword allows the program to erase the last entity inserted into the database without searching the database from the beginning.

When the end of the database is reached, DBStatus is set to two. See Appendix B, "System Variables," for more information.

Rpnt(bexpr):

Optional clause to specify repainting of entity.

Replace bexpr with the Boolean expression after the

keyword Rpnt. lf bexpr evaluates to true, then the entity is

erased from the graphics window after it is deleted from the

database. Otherwise, it is not.

Example
ERASE ENT_ID(E_ENT)

ERASE LAST RPNT(TRUE)

4‑71
Statements and Intrinsics

Statements and Intrinsics
Exist

Type
Intrinsic Function
System Interface

Purpose
Returns true if a specified file exists; otherwise returns false. This function returns a Boolean value.

Syntax
Exist(sexpr)

Parameters
sexpr:
String expression (input)

This parameter specifies the file name. The file name may

include path names and a drive specifier.

4‑72
UPL Revision 6.0

Statements and Intrinsics

Exit

Type
Statement
Flow Control

Purpose
The Exit statement unconditionally or conditionally exits the current Loop or If block structure.

Syntax
Exit Loop | lf iexpr | All When bexpr

Keyword modifiers
Loop | lf:
Optional clause that specifies the type of structure you want

the program to exit.

iexpr | All:
An optional clause that specifies the number of levels in the

structure you want the program to exit. lf you choose All, the

program exits all loop and/or if structures. lf you replace

iexpr with an integer expression, the program exits that

number of structures.

When bexpr:
Optional clause that specifies the Boolean expression to

satisfy in order to exit. Otherwise the program continues

execution on the next line of code.

Examples
Exit
‑‑(Exits 1 if or loop structure)

Exit 2
‑‑(Exits 2 nested if or loop structures)

Exit All
‑‑(Exits all if or loop structures)

Exit If
‑‑(Exits 1 if structure)

Exit If All‑‑(Exits all if structures)

‑‑(Exits all if structures if i = 1)

Exit If All When i = 1

4‑73
Statements and Intrinsics

Statements and Intrinsics
‑‑(Exits 1 if structure if J = 1)

Exit If When J = 1

Exit Loop
‑‑(Exits 1 loop structure)

Exit Loop 2
‑‑(Exits 2 nested loop structures)

Exit Loop All ‑‑(Exits all nested loop structures)

‑‑(Exits all nested loop structures if i = 1) Exit Loop All When J = 1

‑‑(Exits 1 loop structure if J = 1)

Exit Loop When J = 1

‑‑(Exits 1 loop or if structure if i = 1)

Exit When J = 1

4‑74
UPL Revision 6.0

Statements and Intrinsics

Extract

Type
Intrinsic Function
String Handling

Purpose
Extraets a substring from a given string. This function returns a string value.

Syntax
Extract(sexpr, iexpr,numchar)

Parameters
sexpr:
String expression (input)

This parameter specifies the string.

iexpr:
Integer expression (input)

This parameter specifies the starting position in the string

sexpr. lf iexpr is greater than the length of sexpr, a null string

is returned.

numchar:
Integer expression (input)

This parameter speeifies the number of characters to extract

from the string sexpr. If iexpr + numchar is greater than the

length of sexpr, the extracted string will end with the last

character in sexpr.

4‑75
Statements and Intrinsics

Statements and Intrinsics
File

Type

Statement
Declaration

Purpose
Declares the name and aggregate type of a file variable. File variables represent the file to the program and have various attributes which relate to the actual file. File variables use the same name for their data type and aggregate type: file.

File variables may not be assigned a constant value and may not be arrays.

Syntax
File filevar, filevar...

Keyword modifiers
filevar:
Name of the file variable. Only the first 16 characters are used.

All declaration statements must occur after the Proc, Func, and Group statements. They must appear before any other type of statements inside a procedure or function and are the only statements allowed inside the Group section.

For more information, see Chapter 2, Program Structure, and Appendix E, "Internal Data Format."

Examples
File InputFile, OutFile

File DataFile

4‑76
UPL Revision 6.0

Statements and Intrinsics

FillPoly

Type
Intrinsic Procedure
Graphics

Purpose
Creates a filled polygon with a given color. The polygon is only filled on the screen; it does not become part of the part database.

Syntax
FillPoly(color pattern, ixy(1), nverts)

Parameters
color:
Integer expression (input)

This parameter specifies which color to fill the polygon with.

Specify colors with a Personal Designer color number. For a

definition of color numbers, see the SELECT COLOR

Command in the Personal Designer and microDRAFT

Revision 6.0 User Reference Guide. A positive number for

color obscures all geometry inside the polygon. A negative

number leaves the geometry visible. A second call to

FillPoly with a negative color fills the polygon with the

original background color. See the example.

pattern:
Integer expression (input)

This parameter specifies the pattern to fill the polygon with.

If the pattern number is zero or one, the polygon is filied

with a solid pattern, lf the pattern number is greater than

one, the polygon is filled by a pattern specified by the

graphics device driver.

ixy:
Integer array of nvert elements (input/output)

This parameter specifies the X, Y coordinates of the

polygon's vertices. The parameter must be specified in pairs

of X and Y pixel coordinates. To convert from two‑D and

3D coordinates, use the Map2PxN procedure.

nverts:
Integer expression (input)

This specifies the number of X,Y coordinate pairs in the ixy

parameter. A maximum of 6.000 pairs may be specified.

4‑77
Statements and Intrinsics

Statements and Intrinsics
Example
Proc Main

Integer IXY(2,4)

Coord Pnts(4)

Pnts(1) = [2,21

Pnts(2) = [2,‑21

Pnts(3) = [‑2,‑21

Pnts(4) = [‑2,21

Map2PxN(Pnts(1), IXY(1), 4)

Fillpoly(9,1, IXY(1), 4)

Fillpoly(‑9,1, IXY(1), 4)

End Proc

4‑78
UPL Revision 6.0

Statements and Intrinsics
FindFn

Type
Intrinsic Procedure
Operating System

Purpose
Finds the directory of a specific file. The current directory is checked first. If the file is not found there, the file paths given by the paths parameter are searched.

The EnvVar procedure ean be used to get the value of the paths parameter directly from the operating system's path environment variable.

Syntax
FindFn(filename, paths, ifound)
Parameters
filename:
String of 64 characters (input/output)

Thefilename parameter specifies the file name that will be

searched for on input; and the file name that will be returned

on output. On input, do not include path names and drive

specifiers. On output, path names will be returned with the

name of the file.

paths:
String expression (input)

This specifies the drive and path names to search for the

filename parameter. The paths parameter must be specified

in the format <path>;<path>;. This is the same fortnat used

in the path environment variable.

An example of a typical path string is:

C:\DOS;C:\BIN;C:\PD5

ifound:
Integer variable (input/output)

This parameter retums whether or not the file was found.

Values returned are:

0
the file was not found.

1
the file was found.

4‑79
Statements and Intrinsics

Statements and Intrinsics
Example
Proc Main

Integer Ifound

String PathSTR:80,MyDrawing:64

:

EnvVar("PATH",PathStr)

MyDrawing = "GEOM.DRW"

FindFn(MyDrawing,PathStr,IFound)

IF Ifound <> 0 Then

Print "Drawing name and Path is", MyDrawing

Else

Print "Drawing not founds"

End If

End Proc

4‑80
UPL Revision 6.0

Statements and Intrinsics
FindMenu

Type
Intrinsic Procedure
User Interface

Purpose
Determines the on‑screen icon number that is at a screen location. This icon number can then be used with other intrinsie procedures such as GetMenulnfo and HilightMenu.

This procedure rnay be used by UPL programmers who will be writing tutorial programs which have the user selecting an icon menu box. lt may also be used to simply determine which icon the cursor is over.

Syntax
FindMenu(menunum, idigpnt(1))

Parameters
menunum:
Integer variable (input/output)

This parameter returns the icon menu number that the

idigpnt parameter is over. The menunum parameter returns a

negative one if idigpnt is not over any icon menu.

idigpnt:
Integer array (input/output)

This parameter, given in pixel coordinates, speeifies what

screen location to look for the menu icon. To get the current

X, Y cursor position in pixel coordinates, use the GetC

procedure or funetion 11 in the SysVarl procedure. You

must use these procedures since idigpnt is not in the graphics

window.

Example
Find_Menu(MenuNum, IPnt(1))

4‑81
Statements and Intrinsics

Statements and Intrinsics
FindProp

Type
Intrinsic Procedure
Database Access

Purpose
Quickly finds properties of entities.

lf you have a property name and a starting MIB number, this procedure will return the property type, property value, and the MIB number of the next entity the property name was found on.

You may use the intrinsie procedure EntMask to restrict the types of entities to be searched.

Syntax
FindProp(propname, proptype, propval, mib)

Parameters
propname:
String of 8 characters (input/output)

On input, this parameter specifies which property name to

find. The name can include the wildcard character "?" in any

or all of the character positions.

lf a wildcard is specified, this parameter returns, on output,

the name of the property found. Note that if FindProp is

called in a loop, the value of propname can change. You may

need to explicitly reset the value of propname inside the loop

to find the exact propname you want. See the example

below.

proptype:
String of 7 characters (input/output)

If a property is found, the property type is retumed in this

parameter.

propval:
String variable of 100 characters (input/output)

The property value is returned in this parameter.

4‑82
UPL Revision 6.0

Statements and Intrinsics
mib:
Integer4 variable (input/output)

On input, this parameter specifies the MIB number to start

the search at. To search the entire part, the mib parameter

should initially be set to zero. lf a property is found on an

entity, the MIB number will be returned in this parameter. lf

no matching property name is found, a zero will be returned.

To continue searching where the last call to FindProp left off, call FindProp again. Set mib to ‑1 and propname to the name of the desired property. lf negative one is returned, an error has occurred in reading the part database.

Note that the MIB numbers may not be returned in aseending order. To force them into order the part must be packed before calling FindProp.

Example
-- The following is a program fragment that will -- find all properties on all entities that

-- match the name "PART????"

PName1 = IPART????"

MIB = 0

Loop

‑‑This assignment is necessary

‑‑because FindProp changes PName2

PName2 = PName1

FindProp(PName2, PType, PVa1, MIB)

exit when MIB <= 0

Print MIB:6,PName2,',",PType,',",PVa1

MIB = ‑1

End Loop

4‑83
Statements and Intrinsics

Statements and Intrinsics
Flushlnput

Type
Intrinsic Procedure
User Interface

Purpose
Clears the Personal Designer input buffer. When this procedure is called, all pending user input is cleared from the buffer and the UPL program can start obtaining new input.

This can be used in conjunction with the InputStr procedure.

Syntax
Flushlnput

Parameters
This procedure has no parameters.

4‑84
UPL Revision 6.0

Statements and Intrinsics

Func

Type

Statement
Program Structure

Purpose
Declares the name and returned data type of a user‑defined function, as well as the name, data, and storage types of the parameters. All statements between the Fune and End Func keywords form the body of the function.

Syntax
Func funcname(parameterlist) Return retdatatype

Keyword modifiers

funcname:
Declares the name of the user‑defined function. Only the

first 16 characters are used. Usingfuncname in an expression

in the program will cause the function to be called.

Expressions enclosed in parentheses after the function name

will be passed as parameters. The function will return a

value that will take the place of the function call in the

expression. See Chapter 2, Program Structure, for more

information.

parameterlist:
Contains parameter declarations. Parameters are optional,

and any number of them may be declared, but they must be

enclosed in parentheses. lf there are no parameters, you must

still include parentheses. Parameter declarations are

equivalent to variable declarations inside a function‑ their

names are local to the function. However, paratneter names

may not be the same as any variables declared in the Group

section. A parameter list takes the form of:

mode datatype paramname

mode

Keyword which declares the parameter mode. Functions

may only have input parameters. Iherefore, mode must

always be replaced with "in."

4‑85
Statements and Intrinsics

Statements and Intrinsics

datatype

Keyword that declares the data type of the parameter. It must be one of the UPL data types: Integer, Integer4, Real, Coord, String, or Boolean. There is no initial default data type, but, the most recently used data type becomes the default after the first parameter is declared.

paramname

Parameter name. Only the first 16 characters will be used. Arrays and files may not be passed as parameters to functions.

lf a string parameter is declared, the maximum length must be given preceded by a colon.

There are shortcuts for declaring parameters. If the data type of the parameters has not changed, they may simply be separated by commas. lf the data type changes, do the following:

1. separate the declarations with a ; or start a new line

2. list the new data type

3. list the new parameter names separated by commas.

retdatatype:
Keyword that specifies the data type of the return values

computed by the function. This value must be returned from

the function using the Return statement. lt rnust be one of

the UPL data types: Integer, Integer4, Real, Coord, String, or

Boolean.

For more information, see Chapter 2, Program Structure, and Appendix E, "Internal Data Format."

Example
Func ProcessData(In Integer IScalar; Real Delta) \

Return Integer

4‑86
UPL Revision 6.0

Statements and Intrinsics
GetBit

Type
Intrinsic Procedure
Arithmetic

Purpose
Returns the value of a binary bit in the bittable parameter. This value is located at the offset specified by the ibit parameter.

This procedure is useful when you want to store and manipulate large amounts of simple True/False or On/Off data. See SetBit for more information.

Syntax
GetBit(bittable(1), ibit, bit)

Parameters
bittable:
Integer variable or array (input/output)

This parameter specifies a table of bits. Each bit can have a

value of zero or one. Each integer in bittable can store up to

16 binary bit values.

ibit:
Integer expression (input)

This parameter specifies the offset in the bittable(1)

parameter you want returned. The first bit is

ibit = 0.

bit:
Integer variable (input/output)

This parameter returns the value of the bit. It will have a

value of zero or one.

Example
Table(1)
8192‑‑‑ equal to "0010 0000 0000 0000"

in binary Get_Bit(Table(1), 13, BitVal)

Print "Bit 13 is",BitVal

4-87
Statements and Intrinsics

Statements and Intrinsics
GetC

Type
Intrinsic Procedure
User Interface

Purpose
Returns the next character from user input and the current crosshair location. GetC uses the macro set currently selected by Personal Designer.

Syntax
GetC(char ixy(1))

Parameters
char:
String variable of 1 character (input/output)

This parameter returns the retrieved charaeter. lf the user

digitizes a location that is not over a character (: ;) in a

menu, a one is returned. Otherwise char returns the input

character.

ixy:
Integer array of 2 elements (input/output)

This parameter returns the crosshair position (in pixel

coordinates) at the time the character was retrieved. The first

element of ixv is the X value; the second element is the Y

value.

4‑88
UPL Revision 6.0

Statements and Intrinsics
GetCPL

Type
Intrinsic Procedure
Geometric

Purpose
Returns the transformation matrix for a CPL number. Only the transformation and offset portions of the transformation matrix (the first 12 elements), are set. The offset portion of the matrix is not set if the CPL number given is predefined by Personal Designer as a view number. See Appendix E, "Internal Data Format," under Transformation Matrix, for more information.

Syntax
GetCPL(cplno, transform(1))

Parameters
cplno:
Integer expression (input)

This speeifies the construction plane number to get the

transformation matrix for. If the CPL is not defined, the

current view transforrn is returned.

transform:
Real array of 15 elements (input/output)

This returns the transformation matrix for the given CPL

number. Only the first 12 elements of transfonn are filled by

this procedure.

4‑89
Statements and Intrinsics

Statements and Intrinsics
GetCur

Type
Intrinsic Procedure
Input/Output (Window)

Purpose
Returns the cursor column and row position relative to the upper left corner of the specified window.

Syntax
GetCur(iwin, row, col)

Parameters
iwin:
Integer expression (input)

This parameter specifies the window number to get the

cursor position for.

row:
Integer variable (input/output)

This parameter returns the row number of the current cursor

position relative to the window specified by iwin.

col:
Integer variable (input/output)

This parameter returns the column number of the current

cursor position relative to the window specified by iwin.

4‑90
UPL Revision 6.0

Statements and Intrinsics
GetDig

Type
Intrinsic Procedure
User Interface

Purpose
Allows your program to get coordinate data using the Getdata processor. This is the same format used by Personal Designer commands. See Appendix H, "Writing Personal Designer Commands", for more information.

Syntax
GetDig(max, gleep, ndigs, xyz(1))

Parameters
max:
Integer expression (input)

This parameter specifies the number of coordinates to

retrieve. A maximum of 100 is allowed. When the program

is run, if a colon, semi‑colon, carriage return, or control C is

input from a menu or the keyboard, GetDig will stop

accepting digitizes and the systern variable LastChar will be

given that character's ASCII value. Otherwise, LastChar

will be set to one after max digitizes.

gleep:
Integer expression (input)

This parameter specifies how to mark each digitize:

0
No mark.

1
Small x at coordinates.

2
Lines between coordinates.

3
Lines between coordinates and x at coordinates.

ndigs:
Integer variable (input/output)

This parameter returns the number of digitized coordinates.

xyz:
Coordinate array variable of max elements (input/output)

This parameter returns the model space coordinates.

4‑91
Statements and Intrinsics

Statements and Intrinsics
GetEnd

Type
Intrinsie Procedure
User Interface

Purpose
Allows your program to get coordinate data at entity endpoints using the Getdata processor. This is the same format used by Personal Designer commands. See Appendix H, "Writinc, Personal Desi ner Commands," 9 for more information.

Syntax
GetEnd(max, gleep, nend, xyz(1))

Parameters
max:
Integer expression (input)

This parameter specifies the number of coordinates to

retrieve. A maximum of 100 is allowed.

When the program is run, if a colon, semi‑colon, earriage

return, or control C is input from a menu or the keyboard,

GetEnd will stop accepting digitizes and the system variable

LastChar will be given that character's ASCII value.

Otherwise, LastChar will be set to one after max digitizes.

gleep:
Integer expression (input)

This parameter specifies how to rnark each digitize:

0
No mark.

1
Small x at coordinates.

2
Lines between coordinates.

3
Lines between coordinates and x at coordinates.

nend:
Integer variable (input/output)

This parameter returns the number of endpoints. These

endpoints are stored in the xyz parameter.

xyz:
Coordinate array variable of max elements (input/output)

This parameter returns the model space coordinates.

4‑92
UPL Revision 6.0

Statements and Intrinsics
GetEnt

Type
Intrinsic Procedure
User Interface

Purpose
Allows the user to digitize entities in the same manner as with Personal Designer. Using the Getdata processor, GetEnt returns a list of the MIB numbers of digitized entities. Use EntMask to limit the types of entities that GetEnt can select. Make any necessary calls to EntMask before a call to GetEnt. Digitized entities will highlight in the same manner as when digitized in Personal Designer. See Appendix H, "Writing Personal Designer Commands," for more information.

Syntax
GetEnt(maxmib, nent, miblist(1), iend)

Parameters
maxmib:
Integer expression (input)

This parameter specifies the maximum number‑of entities

the user can digitize. Any maxmib value greater than zero

specifies the number of entities the user can select. The

maximum is 1.000. lf the user wants to choose more than

1.000 entities, set maxmib equal to negative one and use the

BigMibList intrinsic function instead of the miblist

parameter.

When the program is run, if a colon, semi‑colon, carriage

return, or control C is input from a menu or the keyboard,

GetEnt will stop accepting digitizes and the system variable

LastChar will be given that character's ASCII value.

Otherwise, LastChar will be set to one after max digitizes.

nent:
Integer4 variable (input/output)

This parameter returns the number of entities actually

digitized.

4‑93
Statements and Intrinsics

Statements and Intrinsics
miblist:
Integer4 array of maxmib elements (input/output)

lf maxmib is greater than zero, this array returns the MIB

numbers; if maxmib is less than zero, it is a signal that the

BigMibList function is used to retrieve the MIB numbers. In

that case, declare miblist to be one element long.

iend:
Integer variable (input/output)

For a line or arc, iend returns the end that is closest to the

digitized point. For a string, it returns the vertex that is

closest to the digitized point. For crosshatching, it returns the

closest end of the closest crosshatching line. For all other

entities, it returns one.

The order the user digitizes points when creating an entity

corresponds to the number that will be assigned to the

endpoint or string vertex.

Example

-- This example shows how to call GetEnt

proc main

integer4 NEnt, MIBList(100), MIB

integer I, Iend

print 'digitize entities:1',

GetEnt(100, NEnt, MIBList(1), Iend)

print

print 'You digged these entities:'

loop I=1 to integer(NEnt)

MIB = MIBList(I)

print MIB

end
loop

end proc

--
4‑94
UPL Revision 6.0

Statements and Intrinsics
GetHelp

Type
Intrinsic Procedure
User Interface

Purpose
Allows the user to access the on‑line help systern while in a UPL program. Users stay in the help system until they press the eseape key to exit. See SetHelp and Appendix H, "Writing Personal Designer Commands," for more information

Syntax
GetHeip(helpindex)

Parameters
helpindex:
Integer expression (input)

This parameter specifies the help index number in the help

definition file you want displayed. lf helpindex is not defined

in the help file, the message "No Documentation Available"

appears.

Example
Get_Help(1001)

4‑95
Statements and Intrinsics

Statements and Intrinsics
GetKbdChar

Type
Intrinsic Function
Operating System

Purpose
Checks whether or not a character has been input to the keyboard. lf it has, the function returns an integer keyboard code. If not, it can wait for a character and then return the code. GetKbdChar bypasses all of Personal Designer's other input sources, (including tablet and execute files), and the keyboard macros.

Syntax
GetKbdChar(iopt)

Parameters
iopt:
Integer expression (input)

This parameter specifies how the UPL program waits for

keyboard input.

‑1 checks the keyboard for a character. lf there is a

character in the keyboard buffer, the function returns its

ASCII value. lf there are no characters, the function

immediately returns a negative one.

0 waits until a character is input on the keyboard. lf there is

a character in the keyboard buffer, the function returns its

ASCII value or it waits until a character is typed in and then

returns its ASCII value.

> 0 waits a specified number of seconds for a character to

be entered. If there is a character in the keyboard buffer, the

function returns its ASCII value, or it waits iopt seconds for

a character to be typed in. If no character has been typed in

iopt seconds, it retums a negative one.

Examples
exit when char(GetKbdChar(‑1» = "s" IDummy = GetKbdChar(0)

4‑96
UPL Revision 6.0

Statements and Intrinsics
GetLayer

Type

Intrinsic Function
Graphics

Purpose

Determines if the display of a particular layer is currently active; and, optionally, if the layer is used.

If the ilayer parameter is positive, GetLayer determines whether the layer is active. lf ilayer is negative, GetLayer determines whether the layer is active and/or used. GetLayer returns the following integer codes:

0
Layer is inactive and not used (if ilayer was less than 0).

1
Layer is active and not used (if ilayer was less than 0).

2
Layer is inactive but the layer is used.

3
Layer is active and is used.

Note that testing for an active layer is faster than testing for a used layer. lf you only need to know whether a layer is active, use positive values for ilayer to allow your UPL program to run faster.

Syntax
GetLayer(ilayer)

Parameters
ilayer:
Integer expression (input)

Allows you to get information about a specific layer number.

Example
ISet = Get_Layer(22)

4‑97
Statements and Intrinsics

Statements and Intrinsics
GetMenulnfo

Type
Intrinsic Procedure
User Interface

Purpose
Returns information about an on‑screen menu icon. An on‑screen menu area can contain an icon or an icon set. The information includes:

• the icon set (layer) number the area belongs to.

• the pixel coordinates of the areas lower left and upper right corner.

• the menu command string associated with the area. For more information, see the Personal Designer and microDRAFT Revision 6.0 User Reference Guide..

Syntax
GetMenuInfo(areanumber, setnumber,areacorners, cmdstring)

Parameters
areanumber:
Integer expression (input)

Allows you to get information about a specific icon menu

number. To retrieve the area number, use FindMenu or

SysVarl with function nine.

Setnumber:
Integer variable (input/output)

Specifies the icon set (layer) which the on‑screen menu area

belongs to. lf the area number is not found, a negative one is

returned.

areacorners:
Integer array of 4 integers (input/output)

This parameter returns the lower left and upper right X, Y

pixel coordinates of the on‑screen menu area associated with

areanumber. Use PixToRowCol to convert the pixel to row

and column coordinates.

cmdstring:
String variable (input/output)

Returns the command string associated with areanumber.

Example
Get_Menu_Info(234, GNum, PickArea(1), CStr)

4‑98
UPL Revision 6.0

Statements and Intrinsics
GetModifier

Type
Intrinsic Procedure
User Interface

Purpose
Returns the modifier values the user has input with the AskModifers procedure. See AskModifers and DefineModifier for more information.

Syntax
GetModifier(iword, selected, numvalue, strvalue)

Parameters
iword:
Integer expression (input)

This parameter specifies which modifier to return the value

for. The modifier number is defined in the DerineModirier

procedure.

selected:
Boolean variable (input/output)

This parameter returns true if the modifier is selected by the

user or if it is initialized to true by the DefineModifier

procedure. Otherwise, it is returned as false.

numvalue:
Real variable (input/output)

lf the modifier type is an integer or real, the numerical value

of the modifier is retumed in numvalue. This value is always

returned as a real even if it is defined as an integer.

lf the modifier type is a boolean, numvalue returns 0.0 for

false and 1.0 for true.

lf the modifier type is a string, numvalue returns the number

of characters in the strvalue parameter.

strvalue:
String variable (input/output)

If the modifier type is a string, (0, P, or Q), this parameter

retums the modifier's string value. Otherwise a null string is

retumed.

Example
Get_Modifier(2, Sel, NVal, Sval)

4‑99
Statements and Intrinsics

Statements and Intrinsics
GetSerialNum

Type
Intrinsic Function
Operating System

Purpose
Retrieves the six‑digit serial number. On DOS systems it the Computervision guard box number. On UNIX workstations, it may be the hostid or a portion of the Ethernet address. It is usually used with the AccessCode function. The function returns the serial number as a 6‑character string.

Syntax
GetSerialNum

Parameters
The GetSerialNum function has no parameters.

Examples
print "The serial number is:",GetSerialNum()

Acode = AccessCode(KeyStr, GetSerialNum())

4‑100
UPL Revision 6.0

Statements and Intrinsics
GetTagField

Type
Intrinsic Procedure
Database Access

Purpose
Returns the value of an entity's tag field. See SetTagField for more information.

Syntax
GetTagField(mib, fieldnumber, fieldstring, errorflag)

Parameters
mib:
Integer4 expression (input)

This parameter is the MIB number of the entity with the tag.

fieldnumber:
Integer expression (input)

This parameter specifies which tag field to read. If the

fieldnumber parameter equals zero, the system tag value is

returned.

fieldstring:
String variable (input/output)

This is the value of the tag field. This parameter specifies the

text string to put into the field. There is a total of 996 bytes

for all tag fields. Each tag field uses two bytes. Each

character given in fieldstring uses one byte. Be sure you do

not exceed this limit.

errorflag:
Integer variable (input/output)

lf there is no tag attached to the entity, errorflag is returned

as negative two. lf thefieldnumber is greater than the

number of fields currently on the tag, errorflag is returned as

negative one. Otherwise, errorflag is returned as zero.

Examples
Get_Tag_Field(Mib1, 1, F1dStr, IErr)

Get_Tag_Field(Mib, 0, SysTag, IErr)

4‑101
Statements and Intrinsics

Statements and Intrinsics
GetView

Type
Intrinsic Procedure
Geometric

Purpose
Returns a transformation matrix for a given view.

Syntax
GetView(viewno, transform(1))

Parameters
viewno:
Integer expression (input)

Specifies the view to get a transformation matrix for. lf the

view for the number given is not defined, the current view

transform is returned.

transform:
Real array of 15 elements (input/output)

This parameter returns the transformation matrix for the

viewno parameter. Only the transform portion of the

transformation matrix (the first 12 elements), is modified.

The XIY/Z offset portion (elements 10, 11, and 12), is also

modified if the viewno parameter is also a CPL number. The

scaling factor portion of the transformation matrix is set to

zero.

Examples

Get_View(8, View8Trans(1))

Get_View(76, Trans(1))

4‑102
UPL Revision 6.0

Statements and Intrinsics

GoTo

Type

Statement
Flow Control

Purpose

Transfers controi of the program to a specified label.

Syntax
GoTo label When bexpr

Keyword modifiers

label:
Specifies the label to transfer control to. A label may be any

legal UPL identifier name followed by a colon. It may have

a maximum of 16 characters. Define label in the current

procedure or function by using the label to start a statement.

The GoTo statement cannot transfer control outside the procedure or function in which it is contained.

When bexpr:
An optional clause that causes the GoTo statement to be executed only when bexpr evaluates to true.

Examples
GOTO ASK

GOTO LAB2 WHEN I = J

LAB2: Print "Hello"

4‑103
Statements and Intrinsics

Statements and Intrinsics
Group

Type
Statement
Program Structure

Purpose
Deelares the name, data, aggregate, and storage types as well as the initial values of global variabies and global named constants. The variabies and constants declared in this section are available to all procedures and functions in the programs. In addition, the variables and constants in this section may also be accessed by other UPL programs which have been invoked by the Process statement.

All declaration statements between the Group and End Group keywords form the body of the group section.

The syntax of all the declarations is exactly the same as for local variables and constants.

Syntax
Group

Keyword modifiers
The variable and constant names used in the Group section cannot be the same as any parameter names for user‑defined procedures and functions.

In order to share the variables and constants with another UPL program, the variables must be defined in the same order in both Group seetions. That is, the variable or constant to be shared between the programs must have the same byte offset from the beginning of the Group section. This offset will depend upon the number and data types of variables in the section before the shared ones. Using the example below, to access Diam from another UPL program, that program must have a Group section which included identical declarations.

Alternately, a dummy declaration could be made to fill the gap between the beginning of the Group section to Diam. Such a declaration would be: Integer Dummy(3). Maxlnt, Minlnt, and Tolerance will occupy the same amount of space which is eight bytes.

4‑104
UPL Revision 6.0

Statements and Intrinsics

The compiler directive $lnclude is useful in creating group section declarations. A file of shared data declarations can be created and inserted into your programs. Since the programs use the exact same declarations, the correct offsets are assured.

For more information, see Chapter 2, Program Structure, and Appendix E, "Internal Data Format."

Example
Group

Const Integer MaxInt = 32767, MinInt = ‑32767

Real Tolerance = 0.0001, Diam = 2.50

String Title = "Wigit Design #345x", \

Dots = '..........'

End Group

4‑105
Statements and Intrinsics

Statements and Intrinsics
GText

Type
Intrinsic Procedure
Graphics

Purpose
Prints alphanumeric text anywhere on the graphics screen. Note that this text is not inserted in the database. This text uses the character font used in Personal Designer alphanumeric windows. The font is limited to the font size specified by your system's graphics device .

See DrawText for related information.

Syntax
GText(color, ixloc, iyloc, hjust, vjust, text)

Parameters
color:
Integer expression (input)

This parameter specifies the color of text. Values are zero

through 15. See the SELECT COLOR command in the

Personal Designer and microDRAFT Revision 6. 0 User

Reference Guide for a definition of color numbers.

ixloc:
Integer expression (input)

This parameter specifies the screen X pixel location where

the text will be drawn.

iyloc:
Integer expression (input)

This parameter specifies the screen Y pixel location where

the text will be drawn.

hjust:
Integer expression (input)

'Mis specifies the horizontal justification of the text.

1
Leftjustification.

2
Centerjustifieation.

3
Rightjustification.

vjust:
Integer expression (input)

This specifies the vertical justification of the text.

4‑106
UPL Revision 6.0

Statements and Intrinsics
1
Bottom justification.

2
Centerjustification.

3
Top justification.

text
String expression (input)

Text specifies the string to be displayed on the graphics

screen. No special characters such as a carriage return

(ASCII 13) or line feed (ASCII 10) are interpreted.

Examples
‑‑ This messalge will print on one line

GText(1, 10, 300, 1, 1,\

"some text on the screen #13"

" more text on the screen")

GText(1, 10, 500‑Iline*16, 1, 1, Line(Iline))

4‑107
Statements and Intrinsics

Statements and Intrinsics
GWinClear

Type
Intrinsic Procedure
Input/Output (Window)

Purpose
Clears the graphics window with the current color of the background.

Syntax
GWinClear(iwin)

Parameters
iwin:
Integer expression (input)

This parameter specifies the graphics window number to

clear. Presently, graphics window one is the only valid value

for iwin. Graphics window one is the same as window 11 in

the Window statement. See DefineAW for more

information.

Example
GWinClear(1)

4‑108
UPL Revision 6.0

Statements and Intrinsics
HilightEnt

Type
Intrinsic Procedure
User Interface

Purpose
Highlights a]ist of entities on the screen. An entity is highlighted in the same manner as when it is digitized by the user in Personal Designer. Highlighting turns off if you repaint the selected entities with RpntEnt or make another call to HilightEnt.

Syntax
HilightEnt(miblist(1), nent, error)

Parameters
miblist:
Integer4 variable or array (input/output)

This specifies the]ist of entity MIB numbers to be

highlighted.

nent:
Integer4 expression (input)

This parameter is the number of entity MIBs in miblist.

error:
Integer variable (input/output)

This parameter is the error flag:

0
No error was found.

Example
HilightEnt(MList(1), 4, Ierr)

4‑109
Statements and Intrinsics

Statements and Intrinsics
HilightMenu

Type
Intrinsic Procedure
User Interface

Purpose
Highlights an on‑screen menu icon with a specified color.

Syntax
HilightMenu(color,menuno)

Parameters
color:
Integer expression (input)

'Mis parameter specifies the color number (0 through 15), to

highlight the on‑screen menu icon with. See the SELECT

COLOR command in the Personal Designer and

microDRAFT Revision 6.0 User Reference Guide for color

definitions.

If the color parameter is greater than zero, the area is filled

with the given color and the icon graphics disappear. If the

parameter is less than zero, the area is filled with the given

color and the icon graphics will remain, but the graphics will

change to another color. A second calt to HilightMenu with

a negative number turns off the highlighting. The suggested

negative value to use is ‑15.

menuno:
Integer expression (input)

This parameter specifies the menu nuniber of the on‑screen

icon to highlight. The menu number can be retrieved by

using the FindMenu procedure or by calling SysVarl with a

value of nine for the ivar parameter.

Example
Hilight_Menu(‑15, 342)

4‑110
UPL Revision 6.0

Statements and Intrinsics

IDiskFree

Type
Intrinsic Function
Operating System

Purpose
Returns the number of free bytes on the specified disk drive. IDiskFree returns an integer4 value. Since the maximum value of an integer4 is about 2 billion, it is can be used for drives containing less than 2 gigabytes of storage. This routine replaces the DiskFree routine.

Syntax
IDiskFree(idrive)

Parameters
idrive:
Integer expression (input)

This parameter specifies the drive you want to query. In the

table below, drive one starts with A and each successive

drive is matched with the next letter in the alphabet. lf you

do not have a drive B, drive C will still be matched with

number three. Values are:

0
current drive

1
A

2
B

3
C

etc.
etc.

Examples
Free = IDiskFree(3)

Free = IDisk_Free(0)

4‑111
Statements and Intrinsics

Statements and Intrinsics
lf‑Then‑Else‑End lf

Type
Statement
Flow Control

Purpose
Conditionally executes a group of statements.

Syntax

lf bexpr1 Then

statements executed if bexpr1 is true

Else lf bexpr2 Then

statements executed if bexpr2 is true

Else

statements executed if none of the bexpr are true

End If

Keyword modifiers
Alt statements between the If and Endlf keywords form the body of the

lf statement.

End If can be typed as shown or as one word, Endlf.

When the program encounters an lf statement, it evaluates the Boolean expression. lf the expression is true, the program executes the statements following Then and up to either the optional Else portion or the Endlf keyword. lf the Boolean expression evaluates to false, the program skips the statements after Then and executes the Else portion instead. In either case, only one alternative is taken. See the second example.

There are several variations on the general format. First, you can use an lf statement without the Else portion to let a program decide whether to perform a certain action, as shown in the first example. lf A is less than or equal to B in this example, the program simply skips this step.

4‑112
UPL Revision 6.0

Statements and Intrinsics
You can also nest lf statements which allows you to make further conditional tests by putting a whole lf statement inside another one. lf you indent each level of nesting, it is easier to tell which lf and End lf keywords are paired together.

lf and Loop statements combined can be nested up to 50 levels. See the third example.

To test one variable for many different values, use Else lf, which is equivalent to an End lf keyword followed by another lf statement. When you use Else lf, you only need one End lf at the end of your code. Only one set of statements is executed between the lf, Else lf, Else, and End lf keywords. This is always the first set of statements whose bexpr evaluates to true. lf none are true, the set following the final Else is executed. lf there is not a final Else keyword, no statements are executed. Examples three and four show the same lf statement coded two ways.

Examples
‑‑Example 1: The simplest form of an if statement.

IP A > B
THEN

PRINT "GOOD VALUE"

ENDIF

‑‑Example 2: A simple If‑Then‑Else statement.

IF X<5 OR X>100 THEN

PRINT Y

ELSE

PRINT X

ENDIF

‑‑Example 3: Nested If‑Then‑Else statements.

IF A=B THEN

A=C

ELSE

IF A=C THEN

A=D

ELSE

IF A=D THEN

A=Z

ELSE

PRINT "A doesn't equal B,C,D"

ENDIF

ENDIF

ENDIP

4‑113
Statements and Intrinsics

Statements and Intrinsics
‑‑Example 4:

--If statement using Else‑If clause.

--This is equivalent to the If statement in

--Example 3.

IF A=B THEN

A=C

ELSE IF A=C THEN

A=D

ELSE IP A=D THEN

A=Z

ELSE

PRINT "A doesn't equal B,C,D"

ENDIF

4‑114
UPL Revision 6.0

Statements and Intrinsics
$lnclude

Type
Statement
Compiler Directive

Purpose
Directs the compiler to read UPL program source code from the specified file.

Syntax
$lnclude filename

Keyword modifiers
filename:
Specifies the name of the file to read UPL source from. It must be a literal or named string constant which specifies a legal file name for your operating system (DOS or UNIX

When the end of this file is reached, the compiler resumes reading program source in the file from which it encountered the previous $lnclude directive.

Included files may be nested up to four levels deep. That is, an included file may contain other $lnclude directives, and so on.

You can develop libraries of subroutines and declarations to use in building more complex UPL programs. This directive allows you to easily insert them. Doing so ensures that you use the same code in each program. This can reduce problems in your programs.

Examples
$include 'vardec.ins'

$INCLUDE 'MATH.LIB'

4‑115
Statements and Intrinsics

Statements and Intrinsics

Index

Type
Intrinsic Function
String Handling

Purpose
Locates the position of a substring within a string. This function returns an integer value which is the position of the first occurrence of the substring. lf no match is found, zero is returned.

Syntax
Index(sexpr1, iexpr, subsexpr)

Parameters
sexpr1:
String expression (input)

This parameter specifies the string to be searched.

iexpr:
Integer expression (input)

This parameter specifies the position in sexpri to start

searching for the substring. By updating this value, you may

search for additional occurrences of subsexpr.

subsexpr:
String expression (input)

This parameter specifies the substring to find.

4‑116
UPL Revision 6.0

Statements and Intrinsics
InputStr

Type
Intrinsic Procedure
User Interface

Purpose
Inputs a given character string to the Personal Designer input buffer. This procedure can be used to set up the input buffer so that a subsequent call to GetDig, GetEnd, or GetEnt will read a GetData modifier or reference such as end, win, mib, etc.

This can be used in conjunction with the Flushluput procedure.

Syntax
InputStr(str)

Parameters
str:
String expression (input)

Character string to 'feed' to 'feed' to Personal Designer. lt

may be up to 400 characters long.

Example
‑‑‑

-- This example shows how to call

-- InputStr cind FlushInput.

proc main

integer4 NEnt, MIBList(100), MIB

integer I, Iend

print 'digitize corners of window:',

FlushInput()

InputStr(' win ')

GetEnt(100, NEnt, MIBList(1), Iend)

print

print 'You windowed these entities:'

loop I=1 to integer(NEnt)

MIB = MIBList(I)

print MIB

end loop

end proc

4‑117
Statements and Intrinsics

Statements and Intrinsics
Insert

Type
Statement
Database Access

Purpose
Allows a new entity to be added to the current drawing database.

Entities are referenced by Master Index Block (MIB) numbers. The number identifies an entity and gives its location in the database. An MIB is assigned when an entity is inserted into the part database by Personal Designer or a UPL program. The number remains valid untit the part is filed or exited with the pack database option.

After the Insert statement is executed, the system variable DBStatus is set. DBStatus gives the result of the insertion. See Appendix B, "System Variabies," for more information.

Syntax
Insert enttype entloc entatts entdata Rpnt(bexpr)

Keyword modifiers
enttype:
Specifies the type of entity to insert: Line, String, Arc, Text

or Point. The enttype must immediately follow the Insert

keyword.

entloc:
Optional clause that returns the location of the inserted

entity. lt uses the Entld keyword:

Entld(i4var)

Returns the MIB number of the inserted entity. Replace

i4var with an integer4 variable. When the statement is

executed, ivar returns the MIB number of the entity inserted.

entatts:
Optional keywords that let you specify the attributes

common to all entities. All entatts keywords have a default

value; if you use a keyword, the value specified in the

expression becomes the new default value. The default value

changes when the keyword is used again in another Insert or

Modify statement. You can use the following entatts

keywords in any order and with all entity types:

4-118
UPL Revision 6.0

Statements and Intrinsics
Color(iexpr) where iexpr is an integer expression which gives the color number for the new entity. The default is the color currently selected by Personal Designer.

Font(iexpr) where iexpr gives the font number for the new entity. The default is the font currently selected in Personal Designer.

Group(iexpr) where iexpr gives the group number of inserted entities. There is no default value.

Layer(iexpr) where iexpr gives the layer for the new entity. The default is the currently selected layer in Personal Designer.

View(iexpr) where iexpr gives the view you will insert your geometry relative to. Without this keyword, the geometry will be inserted in model space which is view one. lf this keyword is used, it affects the data specified in the entdata keywords.

Vvis(iexpr) where iexpr gives the view number that the added entity is visible in (zero to be visible in all views). The default is zero.

entdata:
Lets you specify data which is specific to different entity

types. These keywords also have a default value; if you use

an entdata keyword, the value given in the expression

becomes the new default value. The default value is changed

when you use the keyword again in another Insert or

Modify statement.

Replace entdata with keywords for the specific enttype. The

following list describes the keywords for each entity type:

For Lines:

Ends(cexpr1, cexpr2)

Specify the endpoint coordinates after the keyword Ends.

Replace cexpr1 with end one and cexpr2 with end two of the

line. Both are coordinate expressions. The default for cexpr1

and cexpr2 is [0.0,0.0,0.0]

4‑119
Statements and Intrinsics

Statements and Intrinsics
For Strings:

Verts(iexpr1, carray(iexpr2)) Specifies the coordinates for the vertices of a string entity in an array after the keyword Verts. Replace carray with the name of a coordinate array which speeifies the coordinates for the string vertices. Replace iexpr1 with the number of vertices to get from carray, and iexpr2 with the first element to get out of carray.

For Arcs:

Specify the characteristics of the arc after one of the following keywords. Arcs are drawn counterclockwise.

Org(cexpr) Replace cexpr with the origin of the arc. The default is [0.0,0.0,0.01.

Radius(rexpr) Replace rexpr with the radius of the arc. The default value is 1.0.

AB(rexpr) Replace rexpr with the beginning angle of the arc in degrees. The default is 0.0.

AE(rexpr) Replace rexpr with the ending angle of the arc in degrees. The default is 360.0.

ArcEnds(cexpr1, cexpr2) lf this keyword is given, it replaces AB and AE. Either AB and AE or ArcEnds determine the beginning and ending angles of the arc. The arc is drawn such that a line from the origin (as specified by Org) to cexpr1 determines the beginning angle of the arc, and a line from the origin (as specified by Org) to cexpr2 determines the ending angle of the arc. The arc has a radius specified by Radius above. There is no default for AreEnds; values for AB and AE are used to find the default beginning and ending angles of the arc.

4‑120
UPL Revision 6.0

Statements and Intrinsics
For Text:

Specify the characteristics of the text to be inserted after one of the following keywords:

Ang(rexpr) Replace rexpr with the angle the text is to be inserted at. The angle is in degrees. The default is zero.

Hgt(rexpr) Replace rexpr with the text character height. The default is 0.5.

Just(iexpr) Replace iexpr with one of the text justification codes:

1 left justification.

2 right justification.

3 center justification.

Lnsp(rexpr) Replace rexpr with the text line spacing factor. The default is 1.5.

Org(cexpr)

Replace cexpr with the text origin. The default is

[0.0,0.0,0.0]

Txt(sexpr) Replace sexpr with a string expression that gives the actual text to be inserted. Maximum is 1000 characters. The default is an empty string.

Wdt(rexpr) Replace rexpr with the text character width. The default is 0.5.

For points:

Loc(cexpr) Replace cexpr with the coordinate of the point to be inserted. The default is [0.0,0.0,0.0].

4‑121
Statements and Intrinsics

Statements and Intrinsics
For all above entities:

Rpnt(bexpr) An optional clause; replace bexpr with the Boolean expression after the keyword Rpnt. If bexpr evaluates to true, then the entity is repainted after it is added to the drawing data base. Otherwise, it is not. The default is false.

All entatts and entdata keywords may be used in any order, and may be separated by commas (,) or spaces

Examples
INSERT LINE ENDS([], [1.0, 1.0]), COLOR(IC), \

FONT(3),RPNT(TRUE)

INSERT STRING VERTS(12, VERTICES(1))

INSERT ARC ORG(ORIGIN + [1.0,‑1.0]) AB(45.0)\

AE(135.0) RADIUS(R)

INSERT ARC RADIUS(D/2.0), ORG([]), ARCENDS(C1, C2)\

COLOR(5)

INSERT TEXT HGT(H), WDT(H * 2.0), ORG(TORG),\

TXT("Some text")

INSERT POINT LOC(PNTS(I + 1)) LAYER(10)

4‑122
UPL Revision 6.0

Statements and Intrinsics
Integer

Type
Statement
Declaration

Purpose
Declares the name, data type, aggregate type, and initial value of an integer variable. An initial value is optional. Array variabies must be declared with their maximum subscripts.

Variables of integer data type contain whole number values ranging from ‑32768 to 32767.

Syntax
Integer ivar = iconstl | iarray(iconst2,...),...

Keyword modifiers
ivar:
Integer variable name. Only the first 16 characters are used.

Iconst1:
Optional initial value for a sealar variable. This value must

be a literal or named integer constant. lf the variable is

declared in the Group section, it will be set to this value once

at the beginning of the program. lf the variable is declared in

a procedure or function, it will be set to this value each time

the procedure or function is called.

ivar:
Integer array variable name. Only the first 16 characters are used.

iconst2:
Array subscripts. These declare the variable to have aggregate type array. Up to five subscripts may be declared. The subscripts must be enclosed in parentheses. Array variables may not be given an initial value.

All declaration statements must occur after the Proc, Func, and Group statements. They must appear before any other type of statements inside a procedure or function and are the only statements allowed inside the Group section. For more information, see Chapter 2, Program Structure, and Appendix E, "Internal Data Format."

Example
Integer Int, Count=0, i, IntArray(10)

Integer Maximum = 32767

4‑123
Statements and Intrinsics

Statements and Intrinsics
Integer

Type
Intrinsic Function
Data Conversion

Purpose
Converts a Boolean, integer4, real or string expression to an integer value. Returns an integer. For Boolean values, false equals 0 and true equals 1. For real values, the decimal portion is truncated. Integer4 and real values must be converted with care. lf the exceed the limits of integer (‑32,768 to +32,767) the most significant places are truncated.

Syntax
Integer (expr)

Parameters
expr:
Boolean, integer4, real or string expression (input) to be converted.

4‑124
UPL Revision 6. 0

Statements and Intrinsics
Integer4

Type
Statement
Declaration

Purpose
Declares the name, data type, aggregate type, and initial value of an integer4 variable, also often called a long integer. lt is represented internally by a 4‑byte variable. An initial value is optional. Array variables must be declared with their maximum subscripts.

Variabies of integer4 data type contain whole number values ranging from ‑2,147,483,648 to 2,147,483,647 or approximately plus or minus 2 billion.

Syntax
Integer4 ivar = i4const 1 | iarray(iconst2,...)....
Keyword modifiers
ivar:
Name of the integer4 variable. Only the first 16 characters are used.

i4const1:
Optional initial value for a scalar variable. This value must be a literal

or named integer4 constant. lf the variable is declared in the Group section, it will be set to this value once at the beginning of the program. lf the variable is declared in a procedure or function, it will be set to this value each time the procedure or function is called.

iarray:
Name of the integer4 array variable. Only the first 16 characters are used.

iconst2:
Array subscripts. These declare the variable to have aggregate type array. Up to five subscripts may be declared. The subscripts must be enclosed in parentheses. Array variables may not be given an initial value.

4‑125
Statements and Intrinsics

Statements and Intrinsics
All declaration statements must occur after the Proc, Func, and Group statements. They must appear before any other type of statements inside a procedure or function and are the only statements allowed inside the Group section.

For more information, see Chapter 2, Program Structure, and Appendix E, "Internal Data Format."

Example
Integer4 Int, Count=0, i, IntArray(10)

Integer4 Maximum = 2,147,483,647

4‑126
UPL Revision 6.0

Statements and Intrinsics
Integer4

Type
Intrinsic Function
Data Conversion

Purpose
Converts a Boolean, real, integer or string expression to an integer4, or long integer, value. Returns an integer4. For Boolean values, false equals 0 and true equals 1. For real values, the decimal portion is truncated.

When an [shortl integer is converted to an integer4, the value is not changed. The storage format is converted from 2‑byte format to 4‑byte format. This conversion is useful in assigning an integer to an integer4 variable or passing an integer to a function that requires an integer4 argument.

Syntax

Integer4 (expr)

Parameters
expr:
Boolean, real, integer or string expression (input).

Expression to be converted.

4‑127
Statements and Intrinsics

Statements and Intrinsics
LastDig

Type
Intrinsic Function
User Interface

Purpose
Returns the last digitized location that the system received from the user. The location can be digitized in several Getdata modes such as DIG, ENT, END, and ORG‑ for more information, see Getdata Capabilities in Chapter2of thePersonalDesignerandmicroDRAFTRevision6.OUser Reference Guide. The location returned is in model space coordinates.

Syntax
LastDig()

Parameters
The LastDig function has no parameters.

Examples
if vlen([], LastDig()) <= 4.0 then

print "the last digitize was within 4 units of the

origin"

endif

C1 = LastDig()

Print "you last digitized", C1

4‑128
UPL Revision 6.0

Statements and Intrinsics
LinlntOf

Type
Intrinsic Procedure
Geometrie

Purpose
Determines the true and apparent intersecting points of two lines.

Syntax
LinlntOf(l1end1, l1end2,l2end1, l2end2, int1, int2)

Parameters
l1end1:
Coordinate expression (input)

This speeifies the first end of line one.

l1end2:
Coordinate expression (input)

This parameter specifies the second end of line one.

l2end1:
Coordinate expression (input)

This specifies the first end of line two.

l2end2:
Coordinate expression (input)

This parameter specifies the second end of line two.

Int1:
Coordinate variable (input/output)

This returns the intersection point on line one.

int2:
Coordinate variable (input/output)

This returns the intersecting point on line two. lf the lines

truly intersect in model space, int1 equals int2. lf you are

interested in intersections within some tolerance value, use

the VLen function (VLen(int1, int2)) and compare its result

against your tolerance value.

4‑129
Statements and Intrinsics

Statements and Intrinsics
Ln

Type
Intrinsic Function
Arithmetic

Purpose
Returns the natural logarithm of a real expression. This funetion returns a real value.

Syntax
Ln(rexpr)

Parameters
rexpr:
Real expression (input)

This parameter speeifies the real expression whose natural

logarithm will be returned.

4‑130
UPL Revision 6.0

Statements and Intrinsics

Log

Type
Intrinsic Function
Arithmetic

Purpose
Returns the base 10 logarithm of a real expression. This function returns a real value.

Syntax
Log(rexpr)

Parameters
rexpr:
Real expression (input)

This parameter specifies the real expression whose base 10

logarithm will be returned.

4‑131
Statements and Intrinsics

Statements and Intrinsics

Loop‑End Loop

Type
Statement
Flow Control

Purpose
Executes a group of statements zero or more times.

Syntax
Loop var = expr1 To expr2 By expr3

Statements

End Loop

Keyword modifiers
Each Loop statement keyword has a matching End Loop keyword. All statements between the Loop and End Loop keywords form the body of the loop. End Loop can be typed as shown or as one word, Endloop.

var = expr1 To expr2 By expr3

Optional clause. Replace var with an integer, integer4 or real variable that will count the number of loops executed. You can use var anywhere inside the loop body. However, you should not make any assignment to this variable.

Expr1, expr2, and expr3

Replace with the sarne data type (integer, integer4 or real) as var. They are evaluated onee at the beginning of the loop. The default for expr3 is one if var is an integer or integer4; and 1.0 if var is a real number.

NOTE: By expr3 is an optional clause within the first clause,

var = expri To expr2.

When executing a loop, the loop index var is assigned the value of expr1. The statements are then executed. When End Loop is encountered, control passes back to the Loop keyword. The var variable is then incremented by expr3. If var <= expr2, the statements are executed again and var is incremented by expr3. This sequence repeats until var > expr2 at which point control passes to the statement immediately following the End Loop keyword. (See Example 1 below.)

4‑132
UPL Revision 6.0

Statements and Intrinsics
This logic is reversed if expr1 is greater than expr2 and expr3 is negative. See Example 2 below.

Loop statements may be nested; each Loop keyword is matehed with the closest End Loop keyword. The End Loop must follow the Loop and not be preceded by another unmatched Loop keyword. (See Example 3 below.)

If you do not give the optional var and expr, the Loop statement will loop until an Exit statement is encountered, or until a GoTo statement transfers control to outside of the loop. See Example 4 below. GoTo must not transfer control into the middle of a Loop statement.

Examples
‑‑Example 1:

LOOP J=1 TO NUM COUNT

S=S+1

PRINT S

END LOOP

‑‑Example 2: A "count down" loop

LOOP J=100 TO
 1 BY ‑1

PRINT J

END LOOP

‑‑Example 3:

loop i = 0 to 90 by 10

loop j = 1 to 10

print "the number is", i + j

k = i + j

end loop

end loop

print "the last number was",k

‑‑Example 4:

Loop

accept inum prompt("enter an integer 1‑10")

exit when (inum > 0) and (inum < 11)

end loop

4‑133
Statements and Intrinsics

Statements and Intrinsics
Map2Px

Type
Intrinsic Procedure
Geometric

Purpose
Maps view coordinates to screen pixel coordinates.

Syntax
Map2Px(xy, ixy(1)

Parameters
xy:
Coordinate expression (input)

This parameter specifies the view space coordinates to

convert to pixel space coordinates.

ixy:
Integer array of 2 elements (input/output)

This parameter returns the pixel space coordinates. Element

one is the X pixel value; element two is the Y pixel value.

4‑134
UPL Revision 6.0

Statements and Intrinsics
Map2PxN

Type
Intrinsic Procedure
Geometric

Purpose
Maps view coordinates to screen pixel coordinates.

Syntax
Map2PxN(pnts(1), ixy(1), npnts)

Parameters
pnts:
Coordinate array of npnts (input/output)

This parameter specifies the view coordinate points to be

mapped.

ixy:
Integer array of npnts*2 elements (input/output)

This parameter retums pairs of mapped X and Y coordinates

in screen pixels. The first element of a pair is the is the X

pixel value; the second is the Y pixel value.

npnts:
Integer expression (input)

This specifies the number of points in pnts.

4‑135
Statements and Intrinsics

Statements and Intrinsics

MapCPLM

Type
Intrinsic Function
Geometric

Purpose
Maps a point from CPL coordinates to model space coordinates and returns the model space coordinates. The currently selected CPL is used. lf no CPL is selected, the value of pnt is returned.

Syntax
MapCPLM(pnt)

Parameters
pnt:
Coordinate expression (input)

This parameter specifies the point to be mapped.

4‑136
UPL Revision 6.0

Statements and Intrinsics

MapFrom

Type
Intrinsic Procedure
Geometric

Purpose
Maps a set of points from a transformed coordinate system represented by the transform parameter to the model coordinate system. MapFrom is a generalized version of MapVM. (The latter routine specifically maps points from view to model coordinates.) MapFrom performs the inverse function of MapTo. It is equivalent to calling Transpose to invert a transformation previously used by MapTo and then calling MapTo again.

The transform parameter may be obtained from intrinsics such as Mat3P, RotMat, or even GetView or GetCPL.

Syntax
MapFrom (transform(1), pnts(1), npnts)

Parameters
transform:
Real array of 15 elements (input/output)

This parameter specifies the transformation matrix used to

map the points. Only the first nine elements of transform are

used.

pnts:
Coordinate array of npnts elements (input/output)

On input, this parameter specifies the points to be mapped.

On output, it retums the mapped points.

npnts:
Integer expression (input)

This parameter specifies the number of points in pnts to be

mapped.

Examples
‑‑‑

This exelmple demonstrates the use of MapTo and MapFrom. It inserts a line in the current view, maps the lines endpoints from the current view to a view of your choice, and prints out the endpoints in the view you chose.

4‑137
Statements and Intrinsics

Statements and Intrinsics
proc main

real Transform(15)

coord EndPnts(2)

integer CurView, WhichView

SysVarI(4, CurView)

EndPnts(1) = [0,0,0]

EndPnts(2) = [1,0,0]

insert line ends(EndPnts(1), EndPnts(2)) \

view(CurView) rpnt(true)

print 'In this view the line runs from '

print EndPnts(1),' to ',EndPnts(2)

accept WhichView newline \

prompt('Enter an existing view #: ')

GetView(CurView, Transform(1))

MapFrom(Transform(1), EndPnts(1), 2)

GetView(WhichView, Transform(1))

MapTo(Transform(1), EndPnts(1), 2)

print 'In view ',WhichView,' the line runs',

print 'from ',EndPnts(1),' to ',EndPnts(2)

end proc

4‑138
UPL Revision 6.0

Statements and Intrinsics
MaPix2

Type
Intrinsic Procedure
Geometric

Purpose
Maps pixel space coordinates to view space coordinates.

Syntax
MaPix2(ixy(1), xy)

Parameters
ixy:
Integer array of 2 elements (input/output)

This parameter specifies the pixel space coordinates to

convert to view space coordinates. Elernent one is the X

value; elernent two is the Y value.

xy:
Coordinate variable (input/output)

This parameter returns the view space coordinates. The Z

value represents the currently selected depth.

4‑139
Statements and Intrinsics

Statements and Intrinsics
MaPix2N

Type
Intrinsic Procedure
Geometric

Purpose
Maps an array of points frorn pixel coordinates to current view coordinates.

Syntax
MaPix2N(ixy(1), pnts(1), npnts)

Parameters
ixy:
Integer array of npnts*2 elements (input/output)

This parameter specifies the points to be mapped from pixel

coordinates. The pixel coordinates are in pairs. The first is

the pixel X coordinate and the second is the pixel Y

coordinate.

pnts:
Coordinate array of npnts elements (input/output)

This parameter returns the points mapped to the currently

selected view.

npnts:
Integer expression (input)

This specifies the number of points in pnts to be mapped.

4‑140
UPL Revision 6.0

Statements and Intrinsics
MapMCPL

Type
Intrinsic Function
Geometric

Purpose
Maps a point from model space coordinates to CPL space coordinates and returns the CPL space coordinates. The currently selected CPL is used. lf no CPL is selected, the value of pnt is returned.

Syntax
MapMCPL(pnt)

Parameters
pnt:
Coordinate expression (input)

This parameter specifies the point to be mapped.

4‑141
Statements and Intrinsics

Statements and Intrinsics
MapMV

Type
Intrinsic Function
Geometric

Purpose
Maps a point from model space coordinates to view space coordinates. The currently selected view is used. This function returns a coordinate value.

Syntax
MapMV(pnt)

Parameters
pnt:
Coordinate expression (input)

This parameter specifies the point to be mapped.

4‑142
UPL Revision 6.0

Statements and Intrinsics
MapTo

Type
Intrinsic Procedure
Geometric

Purpose
Maps a set of points from the model coordinate System to a new coordinate system represented by the transform parameter. MapTo is a generalized version of MapMV. (The latter routine specifically maps points from model to view coordinates.)

MapTo and MapFrom are inverse functions. The points may be restored to their previous coordinate system via a call to MapFrom. lt performs the inverse operation of MapTo.

The transform parameter may be obtained from intrinsics such as Mat3P, RotMat, or even GetView or GetCPL.

Syntax
MapTo(transform(1), pnts(1), npnts)

Parameters
transform:
Real array of 15 elements (input/output)

This specifies the transformation matrix used to map the

points. Only the first nine elements of transform are used.

pnts:
Coordinate array of npnts (input/output)

On input, this parameter specifies the points to be mapped.

On output, it returns the mapped points.

npnts:
Integer expression (input)

This specifies the number of points in pnts to be mapped.

4‑143
Statements and Intrinsics

Statements and Intrinsics
Examples
‑‑‑

-- This example demonstrates the use of MapTo and

-- MapFrom. It inserts a line in the current view,

-- maps the lines endpoints from the current view

-- to a view of your choice, and prints out the

-- endpoints in the view you chose.

proc main

real Transform(15)

coord EndPnts(2)

integer CurView, WhichView

SysVarI(4, CurView)

EndPnts(1) = [0,0,0]

EndPnts(2) = [1,0,0]

insert line ends(EndPnts(1), EndPnts(2)) \

view(CurView) rpnt(true)

print 'In this view the line runs from '

print EndPnts(1),' to ',EndPnts(2)

accept WhichView newline \

prompt('Enter an existing view #:')

GetView(CurView, Transform(1))

MapFrom(Transform(1), EndPnts(1), 2)

GetView(WhichView, Transform(1))

MapTo(Transform(1), EndPnts(1), 2)

print 'In view ',WhichView,' the line runs',

print 'from ',EndPnts(1),' to ',EndPnts(2)

end proc

4‑144
UPL Revision 6.0

Statements and Intrinsics
MapTT

Type
Intrinsic Procedure
Geometric

Purpose
Maps points from one coordinate system to another coordinate system. Coordinate systems can be defined by the transformation for views or construction planes‑ see GetCPL, GetView, Mat3P and RotMat for more information. This procedure is equivalent to:

MapFrom(transform1(1), pnts(1), npnts)

MapTo(transform2(1), pnts(1), npnts)

Syntax
MapTT(transform1(1), transform2(1), pnts(1), npnts)

Parameters
transform1:
Real array of 15 elements (input/output)

This specifies the transforrn frorn which to map points.

transform2:
Real array of 15 elements (input/output)

This specifies the transform to which to map points.

pnts:
Coordinate array of npnts elements (input/output)

On input, this parameter specifies the points to be mapped.

On output, it returns the mapped points.

npnts:
Integer expression (input)

This specifies the number of points in pnts to be mapped.

4‑145
Statements and Intrinsics

Statements and Intrinsics
MapVM

Type
Intrinsie Function
Geometric

Purpose
Maps a point from view space coordinates to model space coordinates. This function returns the model space coordinates. The currently selected view is used.

Syntax
MapVM(pnt)

Parameters
pnt:
Coordinate expression (input)

This parameter specifies the point to be mapped.

4‑146
UPL Revision 6.0

Statements and Intrinsics
Mat3P

Type

Intrinsic Procedure
Geometric

Purpose

Produees a transformation matrix for a coordinate system from three points in space.

The coordinate system is defined as follows: the X‑axis is defined by the vector form pntl parameter to pnt2 parameter. The Y‑axis is defined by a line perpendicular to the X‑axis and passing through the pnt3 parameter. The Z‑axis is perpendicular to the XY plane. The positive Z direction is defined by the right hand rule.

Syntax

Mat3P(pnt1, pnt2, pnt3, transform (1))

Parameters
pnt1, pnt2, pnt3:
Coordinate expressions (input) These specify the points used to create the transformation matrix.

transform:

Real array of 15 elernents (input/output)

This parameter returns a view transformation matrix for the coordinate system which is defined by three points.

4‑147
Statements and Intrinsics

Statements and Intrinsics
Max

Type

Intrinsic Function
Arithmetic

Purpose

Returns the value of the largest integer, integer4, real, or string parameter. The number of parameters allowed is unlimited but they must all have the same data type.

NOTE: Strings are compared in the following way: all strings are extended to the length of the largest string with blanks (ASCII character 32 in decimal). Strings are then compared character by character by their ASCII value. Lower ASCII values are considered to be less than higher ASCII values; i.e. A < B< C.

Syntax

Max(expr1, expr2,...)
Parameters
Expr1:
Integer, integer4, real, or string expression (input)

This parameter specifies the first integer, integer4, real, or

string expression.

expr2:
Integer, integer4, real, or string expression (input)

This parameter specifies the second integer, integer4, real, or

string expression.

Examples
A = Max(X,Y,Z)

Largest = Max(i, j, 10, k, 1 x 2)

4‑148
UPL Revision 6.0

Statements and Intrinsics
MemAvail

Type
Intrinsic Function
Operating System

Purpose
Returns the number of 128 byte blocks available on the UPL data stack. The data stack contains local variable data, parameters, procedure, and function return addresses. This function returns an integer.

Syntax
MemAvail()
Parameters
The MemAvail function has no parameters.

4‑149
Statements and Intrinsics

Statements and Intrinsics
MenuCmd

Type
Intrinsic Procedure
User Interface

Purpose
Sends an on‑screen menu command string to the menu command processor. Refer to the Personal Designer and mierodraft Revision 6.0 User Reference Guide, for a description of the menu commands.

Syntax
MenuCmd(menucmdstr)

Parameters
Menucmdstr:
String expression (input)

This specifies the menu command string to send to the menu

command processor. The "\" character usually found in

menu files cannot be used in the menucmdstr parameter. The

above remark has one exception, that is if it is used in a

string with the P command.

Example
‑‑turn off menu 17, put up menu 18.

MenuCmd('M17‑M18+')

4‑150
UPL Revision 6.0

Statements and Intrinsics
MibTag

Type
Intrinsic Procedure
Database Access

Purpose
Returns a unique entity tao, value, given the MIB number of an entity. If the entity has no tag, the tagstr parameter is returned with a length of zero.

There are two parts to an entity tag. The first part is the entity tag value. This is an integer which starts at zero and goes to values over four million. UPL cannot support such a large number as an integer, or integer4 so the number's equivalent representation is returned in a string of 10 characters. An entity can have only one entity tag value at a time.

The second part of an entity tag is the tag field. lt is also a string of characters and it can hold any information associated with the tagged entity. See SetTagField and GetTagField for more information on tag fields.

Syntax
MibTag(mib, tagvalstr)

Parameters
mib:
Integer4 expression (input)

This parameter specifies the MIB number of the entity to get

the tag value for.

tagvalstr:
String variable of 10 characters (input/output)

This returns the tag value.

4‑151
Statements and Intrinsics

Statements and Intrinsics
Min

Type
Intrinsic Function
Arithmetic

Purpose
Returns the value of the smallest integer, integer4, real, or string parameter. The number of parameters allowed is unlimited but they must all have the same data type.

NOTE: Strings are compared in the following way: all strings are extended to the length of the largest string with blanks (ASCII character 32 in decirnal). Strings are then compared character by character by their ASCII value. Lower ASCII values are considered to be less than higher ASCII values; i.e. A < B< C.

Syntax
Min(exprl, expr2,...)

Parameters
expr1:
Integer, integer4, real, or string expression (input)

This parameter specifies the first integer, integer4, real, or

string expression.

expr2:
Integer, integer4, real, or string expression (input)

This parameter specifies the second integer, real, or string

expression.

Examples
B = Min(r, s, t)

smallest = (1, m, 2, n, 5 * i)

4‑152
UPL Revision 6.0

Statements and Intrinsics

MirEnt

Type
Intrinsic Procedure
Database Access

Purpose
Mirrors the entities about a given plane. The plane is defined by a transformation matrix which can be generated by calling Mat3P or similar functions.

Syntax
MirEnt(miblist(1), nent, transform(1))

Parameters
miblist:
Integer4 array of nent elements (input/output)

This parameter specifies the entities to be mirrored.

nent:
Integer4 expression. Specifies the number of entities to be

mirrored.

transform:
Real array of 15 elements (input/output)

This specifies the transformation matrix that defines the

plane on which to map the points. Elements 10, 11, and 12

specify the origin of the plane.

4‑153
Statements and Intrinsics

Statements and Intrinsics
MirEntCopy

Type
Intrinsic Procedure
Database Access

Purpose
Mirrors a copy of entities about a given plane. The plane is defined by a transformation matrix which can be generated by calling Mat3P or similar functions. The copied entities are added to the end of the database.

Syntax

MirEnt(miblist(1), nent, transform(1))

Parameters
miblist:
Integer4 array of nent elements (input/output)

This parameter specifies the entities to be mirrored.

nent:
Integer4 expression. Specifies the number of entities to be

mirrored.

transform:
Real array of 15 elements (input/output)

This specifies the transformation matrix that defines the

plane on which to map the points. Elements 10, 11, and 12

specify the origin of the plane.

4‑154
UPL Revision 6.0

Statements and Intrinsics

MirPnt

Type
Intrinsic Procedure
Geometric

Purpose
Mirrors a set of points about a given plane. The plane is defined by a transformation matrix which can be generated by calling either the GetCPL, GetView, or Map3P procedures.

Syntax
MirPnt(transform(1), pnts(1), npnts)

Parameters
transfom:
Real array of 15 elements (input/output)

This specifies the transformation matrix that defines the

plane on which to map the points. Elements 10, 11, and 12

specify the origin of the plane.

pnts:
Coordinate array of npnts elements (input/output)

On input, this parameter specifies the points to be mirrored.

On output, it returns the mirrored points.

npnts:
Integer expression (input)

This parameter specifies the number of points in the pnts

array.

4‑155
Statements and Intrinsics

Statements and Intrinsics
ModI

Type

Intrinsic Function
Arithmetic

Purpose
Returns the modulo, (or remainder), of the num and divisor parameters. These parameters must be integers; the function also returns an integer.

Syntax
Modl(num, divisor)

Parameters
num:
Integer expression (input)

This specifies the input number, or the dividend.

divisor:
Integer expression (input)

This specifies the divisor for the input number.

4‑156
UPL Revision 6.0

Statements and Intrinsics
ModI4

Type
Intrinsic Function
Arithmetic

Purpose
Returns the modulo, (or remainder), of the num and divisor parameters. These parameters must be of type integer4; the function also returns an integer4.

Syntax
Modl(num, divisor)

Parameters
num:
Integer4 expression (input)

This specifies the input number, or the dividend.

divisor:
Integer4 expression (input)

This specifies the divisor for the input number.

4‑157
Statements and Intrinsics

Statements and Intrinsics
Modify

Type
Statement
Database Access

Purpose
Modifies existing entities in the drawing database. Only the current part file may be modified.

Entities are referenced by Master Index Block (MIB) numbers. The number identifies an entity and gives its location in the database. An MIB is assigned when an entity is inserted into the part database by Personal Designer or a UPL program. The number remains valid until the part is filed or exited with the pack database option.

After the Modify statement is executed, the system variable DBStatus is set. DBStatus gives the result of the insertion. See Appendix B, "System Variables," for more information.

Syntax
Modify enttype entloc entatts entdata Rpnt(bexpr)

Keyword modifiers
enttype:
Optional keyword that gives the type of entity to be modified. Replace enttype with one of the following keywords: Line, String, Arc, Text or Point. The enttype keyword must directly follow the Modify keyword.

entloc:
Specifies which entity to modify. You must use an entloc keyword in this statement. The entloc keyword can be used in two ways; the one you use depends on whether you know the MIB number of the entity to be modified.

lf you know the entity's MIB number, use this form for

entloc:

Entld(i4expr)

Replace i4expr with an integer expression for the MIB

number. You may find the MIB number by using the Verify

4‑158
UPL Revision 6.0

Statements and Intrinsics
statement or by using intrinsic functions. Some intrinsics, such as GetEnt, allow the user to digitize entities in the graphics window. Their MIB numbers are then available to the program. Other functions, such as FindProp and TagMib, will return an MIB number when given non‑graphical information such as the entity's properties or tags. lt is recommended that the MIB number be obtained before using the Modify statement.

lf you do not know the entity's MIB number, you may use one of the following keywords for entloc:

First
Modifies the first entity in the database. This will initialize the database search.

Next

Modifies the next entity in the database. This keyword allows the program to step through the database sequentially and modify each entity. Each time a Modify Next statement is executed, the next entity in the database with the matching enttype is modified. If no enttype is given, any entity is matched. A Modify Next statement may also be used after an Entld(i4expr) statement. The database search will then start at the i4expr entity instead of the first entity.

Last Modifies the last entity in the database. This keyword allows the program to modify the last entity inserted into the database without searching the database from the beginning.

lf the type of entity specified by the enttype keyword does not match the type found using the entloc keyword, the DBStatus variable is set to three. When the end of the database is reached, DBStatus is set to two. See Appendix B, "System Variables," for more information.

entatts:
Optional keywords that let you change the data of an entity.

You can use the following entatts keywords with all entity

types:

Color(iexpr)

where iexpr gives the new color number for the modified

entity.

4‑159
Statements and Intrinsics

Statements and Intrinsics
Font(iexpr) where iexpr gives the new font number for the modified entity.

Group(iexpr) where iexpr gives the modified group number of inserted entity.

Layer(iexpr) where iexpr gives the layer for the modified entity.

Vvis(iexpr) where iexpr gives the new view number that the modified entity is visible in,

entdata:
Optional keywords that provide the data to be modified for a

specified enttype. The keywords for each enttype are:

For Lines:

Ends(cexpr1, cexpr2)

Specify the endpoint coordinates after the keyword Ends.

Replace cexpr1 with end one and cexpr2 with end two of the

line. Both are coordinate expressions which represent model

space coordinates. The default for cexpr1 and cexpr2 is

[0.0,0.0,0.0].

For Strings:

Verts(iexpr1, carray(iexpr2))

Specify the coordinates for the vertices of a string in carray.

Replace carray with the name of a coordinate array which

contains the model space coordinates for the string vertices.

Replace iexpr1 with the number of vertices in carray, and

iexpr2 with the first element of carray to be used.

For Arcs:

Specify what you want to change after one of the following keywords:

Org(cexpr) Replace cexpr with the new model space origin of the modified arc.

Radius(rexpr)

Replace rexpr with the new radius of the arc. Arcs are drawn counterclockwise.

4‑160
UPL Revision 6.0

Statements and Intrinsics
AB(rexpr)Replace rexpr with the new beginning angle of the modified arc in degrees.

AE(rexpr) Replace rexpr with the new ending angle of the modified arc in degrees.

ArcEnds(cexpr1, cexpr2)

If this keyword is given, it replaces AB and AE. Either AB and AE or ArcEnds determine the beginning and ending angles of the arc. The arc is drawn such that a line from the origin (as specified by Org) to cexprl determines the beginning angle of the arc, and a line from the origin (as specified by Org) to cexpr2 determines the ending angle of the arc. The arc has a radius specified by Radius above. There is no default for ArcEnds; values for AB and AE are used to find the default beginning and ending angles of the arc.

For Text:

Specify the new characteristics of the text to be modified after one of the following keywords:

Ang(rexpr)

Replace rexpr with the new angle for the text.

Hgt(rexpr)

Replace rexpr with the new text character height.

Just(iexpr)

Replace iexpr with the new text i ustification code:

1 ‑ left justification

2 ‑ right justification

3 ‑ center j ustification

Lnsp(rexpr)

Replace rexpr with the new text line spacing factor.

Org(cexpr)

Replace cexpr with the new text origin in model space.

Txt(sexpr)

Replace sexpr with a string expression that gives the new text.

4‑161
Statements and Intrinsics

Statements and Intrinsics

Wdt(rexpr)

Replace rexpr with the new text character width.

For Points:

Loc(cexpr)

Replace cexpr with the new model space coordinate of the point to be modified.

For all entity types:

Rpnt(bexpr)

Optional clause. Replace bexpr with the Boolean expression after the keyword Rpnt. lf bexpr evaluates to true, then the entity is repainted after it is modified. Otherwise, it is not.

Example
MODIFY LINE ENDS(C1,C2) ENT ID(MIB NUM) COLOR(IC)\ RPNT(TRUE)

4‑162
UPL Revision 6.0

Statements and Intrinsics
ModR

Type
Intrinsic Function
Arithmetic

Purpose
Returns the modulo, (or remainder), of the num and divisor parameters. These parameters must be real numbers; the function will also return a real number.

Syntax
ModR(num, divisor)

Parameters
num:
Real expression (input)

This specifies the input number, or dividend.

divisor:
Real expression (input)

This specifies the divisor for the input number.

4‑163
Statements and Intrinsics

Statements and Intrinsics
Mouselnp

Type
Intrinsic Procedure
User Interface

Purpose
Returns information about input from the pointing device. It may be called in a loop to track mouse movements and check for presses to mouse buttons. The procedure returns immediately after the call and does not wait for input.

Syntax
Mouselnput(digchar, moved, locpix, locdev)

Parameters
digchar:
Integer variable (input/output)

Returns the ASCII value of the button(s) pressed on the input

device. This is sent from the device driver back to Personal

Designer. A value of 1 indicates a button has been pushed. All other values are device dependent.

moved
Boolean variable (input/output)

Returns a boolean value telling whether the mouse has

moved from the coordinates specified in locpix.

locpix
Integer array of 2 elements (input/output)

On output, specifies the latest mouse position in pixel

coordinates. This is clipped to the graphics device page

coordinates, not the graphics window coordinates. See Chap-

ter 3, Functional Listing, under Window Input/Output Intrinsics

for more information.

locdev
Integer4array of 2 elements (input/output)

Returns the latest mouse position in input device coordinates.

These depend upon the type of input device and its current

resolution settings. On input, if locdev(1) is <0, the system uses the current rnouse position as the initial position. If you set locdev to ‑1, this tells the system to start tracking the mouse at its current position. On input, if locdev is not ‑1 (or <0) then use the location specified by loedev as the mouse's starting point.

4‑164
UPL Revision 6.0

Statements and Intrinsics
MovEnt

Type
Intrinsic Procedure
Database Access

Purpose
Moves a set of entities from one location to another. With MovEnt, only the location changes. The graphics of the entity's previous location are erased.

Syntax
MovEnt(miblist(1), nent, deltaxyz(1))

Parameters
miblist:
Integer4 array of nent elements (input/output)

This parameter specifies the MIB numbers of the entities to

be moved.

nent:
Integer4 expression (input)

This specifies the number of entities in miblist.

deltaxyz:
Real array of 3 elements (input/output)

This parameter specifies the amount to move the entity in

each direction of X, Y and Z respectively. In a

transformation matrix, these deltas are stored in elements 10,

11, and 12.

4‑165
Statements and Intrinsics

Statements and Intrinsics
MovEntCopy

Type
Intrinsic Procedure
Database Access

Purpose
Copies a set of entities and moves it to a new location. The only difference between the new entities and their copies is the location. The new entities are added to the end of the database.

Syntax
MovEntCopy(miblist(1), nent, deltaxyz(1))

Parameters
miblist:
Integer4 array of nent elernents (input/output)

This parameter specifies the MIB numbers of the entities to

be moved.

nent:
Integer4 expression (input)

This is the number of entities in miblist.

deltaxyz:
Real array of 3 elements (input/output)

This parameter specifies the amount to move the entity in

each direction of X, Y and Z respectively. In a

transfonnation matrix, these deltas are stored in elements 10,

11 and 12.

4‑166
UPL Revision 6.0

Statements and Intrinsics
NullTransform

Type
Intrinsic Procedure
Geometric

Purpose
Returns the null transformation matrix. This function should be used to initialize a transformation matrix before using the matrix in a UPL program. The values returned by the procedure are:

The null transform values are:

1.0 0.0 0.0

0.0 1.0 0.0

0.0 0.0 1.0

The X, Y, Z offset values are:

0.0 0.0 0.0

The X, Y, Z scaling values are:

1.0 1.0 1.0

Syntax
NullTransform(transform(1))

Parameters
transform:
Real array of 15 elements (input/output)

This parameter returns the null transformation matrix to be

initialized. After this procedure is executed, this matrix will

contain the values listed above.

4‑167
Statements and Intrinsics

Statements and Intrinsics
NumToCntrl

Type

Intrinsic Function
Data Conversion

Purpose
Converts characters in the form #ascii num# to ASCII control characters and returns the new string value. This is the same format used by Personal Designer and the UPL compiler. See CntrIToNum for more inforrnation. For a complete list of the ASCII character set, see Appendix F, "ASCII Character Set."

Syntax
NumToCntrl(str)

Parameters
str:
String expression (input)

This parameter specifies the string containing the character

sequence #ascii num#. Characters that are not in this form

are not changed.

4‑168
UPL Revision 6.0

Statements and Intrinsics
Open

Type
Statement
Input/Output

Purpose
Opens a file for reading and/or writing. lf the file you open does not exist, a new file is created.

UPL has two kinds of files: text and binary. There are also two kinds of file access: sequential and random. The default is a sequential access text file.

lt is easier to create and verify data in a text file, so you should try to use text files in most of your UPL programs. A text file may be examined or created by any program or command capable of reading or writing a text file; for example, a text editor. However, if the UPL programs will read and write files for programs other than Personal Designer, you may have to use binary files. This should allow your files to be compatible with the other programs.

All files have afile pointer. This is the position in the file at which the next Read or Write will occur. The file pointer is moved about differently for sequential and random access files.

Syntax
Open flvar fn Binary Reclen(iexpr)

Keyword modifiers
flvar:
File variable. See the File declaration statement for rnore

information.

fn:
String expression which gives the name of the file to be

opened.

Binary:
Optional keyword. Specifies the kind of file to be opened.

If you do not use the Binary keyword, the file will be a text file. A text file is made up of ASCII characters. These characters are the ASCII representation of integer, real, coordinate, Boolean, or string data.

4‑169
Statements and Intrinsics

Statements and Intrinsics
Text files are divided into lines. The lines are separated by an end‑of‑line sequence. For DOS these are the carriage return (ASCII 13) and the line feed (ASCII 10) characters together. On UNIX, it is just the line feed character (ASCII 10). Text files may end with an end‑of‑file mark. On DOS, the end‑of‑file mark is ^Z (ASCII 26); on UNIX, it is AD (ASCII 4). Do not read or write these special characters as part of your data: the Read and Write statements will do this for you. The Read and Write statements will transfer data and automatically convert data between the ASCII character format in the file and the internal data storage format of the variable. For more information, see the Read and Write statements, Appendix F, "ASCII Character Set," and Appendix E, "Internal Data Format."

Ifyou do use the Binary ke.yword, the file will be a binary file. A binary file is made up of data in the internal storage format for integer, real, string, Boolean, and string data. There is no line separation in a binary file. lt is just a series of bytes. The Read and Write statements merely transfer the appropriate number of bytes between the file and the program's variables.

Reclen:
Optional keyword. Specifies the method of file access.

Ifyou do not use the Reclen keyword, the program will use sequential access. Sequential access starts at the beginning of the file and reads or writes data at the file pointer. The file pointer is then advanced. The file pointer cannot move backward. lt may, however, be set to the beginning of the file. This can only be done by closing the file and opening it again. For more information see the Close statement.

If you do use the Reclen keyword, the file will use random access. A random access file may position the file pointer to the beginning of any record within the file. Setting the file variable's POSITION attribute sets the file pointer. The file pointer may be moved to a position within a record using the Read statement.

4‑170
UPL Revision 6.0

Statements and Intrinsics

The record length is also set by the Reclen keyword . lt may be checked using the file variable's.RECLEN attribute. Replace iexpr with an integer expression for the record length in bytes. In text files, the record length must include the end‑of‑line sequence. Thus, add 2 to the record length when running under DOS; add 1 to the record length when running under UNIX. Reclen only affects how much the file pointer is moved; it does not affect how much data is read.

The file pointer may also moved using the POS4 attribute. Setting this 4‑byte integer value moves the file pointer to the specified offset from the beginning of the file. lt is not effected by the POSITION attribute or the record length specified in the Reclen keyword.

At most, UPL can have four files open at one time. lf UNDO is on, or if a journal file is on, this is reduced to three. In addition, some Personal Designer commands such as PLOT, EXEC, INSERT TFILE, and INSERT FIGURE require a file to execute. lf you have used all available files and invoke one of these commands using the Send statement, your files may be damaged. These restrictions exist because DOS limits the number of files that can be open to 20, and Personal Designer uses 16 of these.

Examples
OPEN F1 FNAME BINARY RECLEN(32)

Open Txt "\DATA\PROPERTY.DAT"

string FileName:60

file FileVar

:

:

accept FileName prompt("Enter name of file: ")

open FileVar FileName

4‑171
Statements and Intrinsics

Statements and Intrinsics
Pagelnfo

Type

Intrinsic Procedure
Operating System

Purpose
Returns information about the graphics display device. For more information, see "Input/Output (Window) Intrinsics in the Functional

Listing of Statements and Intrinsics chapter.

Syntax
Pagelnfo(infono, pageno, pagedata(1))

Parameters
infono:
Integer expression (input)

This parameter speeifies the information to return about the

graphics driver. The four input values are:

1
page type.

2
pixel width of characters.

3
pixel height of characters.

4
page size in pixels.

pageno:
Integer expression (input)

This parameter speeifies the graphics device page to query.

Values are:

1‑6
These query pages 1‑6. If the graphics device

does not support a page, pagedata returns a zero.

‑1
Returns information about the page containing the

window most recently accessed by the Accept,

Display, Print, or Send statements.

‑2
Returns information about the page containing the

graphics window.

pagedata:
Integer array of 4 elements (input/output)

This parameter returns the page inforniation:

4‑172
UPL Revision 6.0

Statements and Intrinsics
lf infono = 1, pagedata(1) contains integer code telling what

kind of information is on the page:

0
invalid page

1
alpha/text only

2
graphics only

3
alpha/text and graphics

lf infono = 2, pagedata(1) holds the pixel width (X direction) for each character in alpha/text.

lf infono = 3, pagedata(1) holds pixel height (Y direction) for each character in alpha/text

lf infono = 4, pagedata(4) holds pixel coordinates of corners of the graphics device page:

pagedata(1) X coordinate of lower left corner

pagedata(2) Y coordinate of lower left corner

pagedata(3) X coordinate of upper right corner

pagedata(4) Y coordinate of upper right corner

4‑173
Statements and Intrinsics

Statements and Intrinsics
Pi

Type
Intrinsic Function
Trigonometric

Purpose
Returns the real value equal to 3.141593.

Syntax
Pi()

Parameters
The Pi function has no parameters.

4‑174
UPL Revision 6.0

Statements and Intrinsics
PixToRowCol

Type
Intrinsic Procedure
Input/Output (Window)

Purpose
Converts pixel coordinates to the corresponding row and column coordinates. This procedure can be used with DerineAW to convert the dimensions of your alphanumeric window. See RowColToPix for more information. For more information, see "Input/Output (Window) Intrinsics in the Functional Listing of Statements and Intrinsics chapter.

Syntax
PixToRowCol(ixy(1), ipage)

Parameters
ixy:
Integer array of 4 elements (input/output)

On input, this parameter specifies the two X, Y pixel

locations. On output, it returns the equivalent row/column

position.

This parameter ean be used to represent the lower left and

upper right corners of a window in the DerineAW procedure:

ixy(1)
Left boundary.

ixy(2)
Lower boundary.

ixy(3)
Right boundary.

ixy(4)
Upper boundary.

ipage:
Integer expression (input)

This parameter specifies the graphies device page number

for the conversion.

4‑175
Statements and Intrinsics

Statements and Intrinsics
PntPrp

Type
Intrinsic Procedure
Geometric

Purpose
Returns the projection of a point onto a line. lt returns the intersecting point of the two imaginary lines. The first line passes through two points in space. The second line starts at a given point in space and intersects the first line so that the two lines are truly perpendicular. This point of intersection is the projection of the given point on the given line. All points must be given using the same coordinate system.

Syntax
PntPrp(lend1, lend2, pnt, prppnt)

Parameters
lend1:
Coordinate expression (input)

This parameter specifies one end of the first line.

lend2:
Coordinate expression (input)

This parameter specifies the other end of the first line.

pnt:
Coordinate expression (input)

This parameter specifies the point to project onto the line

specified by lend1 and lend2.

prppnt:
Coordinate variable (input/output)

This parameter returns the projection of pnt onto the line

specified by lend1 and lend2.

4‑176
UPL Revision 6.0

Statements and Intrinsics
PntPrpV

Type
Intrinsic Procedure
Geometric

Purpose
Returns the projection of a point onto a line in a given view. lt returns the point of intersection of two imaginary lines seen as perpendicular in the given view. The first line passes through two points in space. The second line starts at a given point in space and interseets with the first line so that the two lines appear to be perpendicular when seen from the given view. This point of intersection is the projection of the point on a line in the given view.

The lines in this procedure may only appear to be perpendicular, whereas the lines in the PntPrp procedure are actually perpendicular. All points in space are given in model coordinates.

Syntax
PntPrpV(viewno, lend1, lend2, pnt, prppnt)

Parameters
viewno:
Integer expression (input)

This parameter specifies the view number in which the pnt

parameter appears to be projected.

lend1:
Coordinate expression (input)

This parameter specifies one end of the first line.

lend2:
Coordinate expression (input)

This parameter specifies the other end of the first line.

pnt:
Coordinate expression (input)

This parameter specifies the point to project in the given

view.

prppnt:
Coordinate variable (input/output)

This parameter returns the projeetion of pnt onto the line

given by lend1 and lend2 as it appears in the given view.

4‑177
Statements and Intrinsics

Statements and Intrinsics
PolyArea

Type
Intrinsic Procedure
Geometric

Purpose
Calculates the area of a polygon given by the vertices parameter. The polygon can be open or closed.

Syntax
PolyArea(vertices(1), nvert, area)

Parameters
vertices:
Coordinate array of nvert elements (input/output)

This parameter specifies the vertices of the polygon. lf the

polygon is not closed, the line between the first and last

vertex will act as the closing side.

nvert:
Integer expression (input)

This parameter specifies the number of vertiees in the

vertices parameter.

area:
Real variable (input/output)

This returns the area of the polygon in squared database

units.

4‑178
UPL Revision 6.0

Statements and Intrinsics
Polywin

Type
Intrinsic Procedure
Geometric

Purpose
Determines if a point lies within the boundaries of a polygon. The point and the polygon must exist in the same plane.

Syntax
PolyWin(vertices(1), nver, pnttocheck, pntin)

Parameters
vertices:
Coordinate array of nvert elements (input/output)

This parameter specifies the vertices of a polygon. A

maximum of 1.000 vertices may be specified.

nvert:
Integer expression (input)

This parameter specifies the number of vertices in the

vertices Parameter.

pnttocheck:
Coordinate expression (input)

This parameter specifies the point to check.

pntin:
Boolean variable (input/output)

This parameter returns true if pnttocheck is bounded by the

polygon; otherwise it returns false. If a point is on a

boundary defined by the vertices, or is the same as a vertex,

pntin returns true.

4‑179
Statements and Intrinsics

Statements and Intrinsics
Print

Type

Statement
Input/Output (Window)

Purpose
Prints numerical or string expressions to a window on the screen.

Syntax
Print expr :f1:f2 expr:f1:f2...,

Keyword modifiers
expr:
Optional expression. Replace expr with any resulting data type except file. After the expression is evaluated, the result is printed at the current cursor location in the Print window. This is the Personal Designer command window by default. To change the window use the PrintWin system variable to specify the window number. For more information, refer to DefineAW and Appendix B, "System Variables."

f1:
Optional expression that can be used with expr. This lets you format the output of the expression by indicating the field width. Replace f1 with the field width the expr value is to be printed in. The expression is printed rightjustified if the field width is positive and left justified if the field width is negative. Always choose a field width that will accommodate the length of the longest expression to be printed. lf you try to print an expression that is longer than the given field width, the expression is truncated on the right. lf no field width is given, the statement uses any field width that is necessary to print the value.

f2:
Opüonal expression that can be used with f1 to format the decimal spacing for real and coordinate values. Replace f2 with the number of places to the right of the decimal point. The decimal point uses one decimal place. If f2 is negative, the number is printed in exponential

4‑180
UPL Revision 6.0

Statements and Intrinsics
form. Note that trailing zeros will be added to fill out the field if the value can be exactly expressed in fewer decimal places than specified by f2. If the number cannot be expressed in exactly f2 decimal places, it will be rounded up. The default value is to print all significant digits and one trailing zero.

Optional punctuation. lf the last item in the Print statement is a comma, the cursor is left at the end of the current line. (i.e. no end‑of‑line sequence is printed.) Otherwise, it is moved to the beginning of a new line. An empty (no expression) Print statement moves the cursor to the beginning of a new line.

Examples
PRINT
'Select Option ':30,

PRINT A/(3.0+B):12:2, 'A string', B1 OR B2:10

4‑181
Statements and Intrinsics

Statements and Intrinsics
Proc

Type

Statement
Program Structure

Purpose
Declares the name of a user‑defined procedure, as well as the name, data, aggregate, and storage types of the parameters. All statements between the Proc and End Proc keywords form the body of the procedure.

Syntax
Proc procname(parameterlist)

Keyword modifiers
procname:
Declares the name of the user‑defined procedure. Only the

first 16 characters are used. Using procname as a statement

in the program causes the procedure to be called. Variables

or expressions enclosed in parentheses after the procedure

call will be passed as parameters. See Chapter 2, Program

Structure, for more inforrnation.

parameterlist:
Contains parameter declarations. Any number of parameters

may be declared, but they must be enclosed in parentheses if

they exist. lf there are no parameters, do not include

parentheses. Parameter deelarations are equivalent to

variable deelarations inside a procedure: their names are

local to the procedure. However, parameter names may not

be the same as any variables declared in the Group section.

A parameter list takes the form of

mode datatype paramname.

mode

Parameter mode. lt must be either In for input parameters or

InOut for input/output parameters. The Initial default mode

is input. The default mode becomes the most recently used

mode thereafter.

paramname

Name of the parameter. Onty the first 16 characters will be

used.

4‑182
UPL Revision 6.0

Statements and Intrinsics

datatype:

Data type of the parameten lt may be any of the UPL data types: Integer, Integer4, Real, Coord, String, Boolean, or File. There is no initial default data type, but, the most recently used data type becomes the default after the first parameter is declared.

Arrays may only be passed as input/output parameters. The array parameter's declaration must include the maximum subscripts enclosed in parentheses.

lf a string parameter is declared as input, the maximum length must be given, preceded by a colon. If a string parameter is declared as input/output, the maximum length used is the maximum length of the string variable passed as a parameter to the procedure.

There are shortcuts for declaring parameters. If the mode and data type of the parameters has not changed, they may simply be separated by commas. If either the mode or data type changes, do the following:

1. separate the declarations with a ; or start a new line

2. list the new mode and data type if the mode changes or list the new data type only if the data type changes.

3. list the new parameter names separated by commas.

Example
For more information, see Chapter 2, Program Structure, and

Appendix E, "Internal Data Storage Format."

4‑183
Statements and Intrinsics

Statements and Intrinsics
Process

Type
Statement
Flow Control

Purpose
Allows other UPL programs to be executed inside a running UPL program.

When a Process statement is encountered, the flow of control passes from your program to another program. After this program is executed, the flow of control returns to your program and continues execution on the staternent immediately following the Process statement.

Data may be passed from the calling program to the called program with variables which are declared identically in the Group section of each program. These variables must be declared in the exact same order in each program. The offset of each shared variable from the beginning of the Group seetion must be the same. The offset is determined by the variable's data type and the order it is deelared. See the Group statement and Appendix E, "Internal Data Format," for more information.

lf the new program uses more code than your current program, use $CodeSize to allocate enough memory for the new program. Note this directive is only effective if either program is larger than the default value set by the configurator.

Syntax
Process sexpr

Keyword modifiers

sexpr:
Name of the UCD file to be executed. The UCD extension is automatically appended to the end of sexpr to complete the file name.

Examples
PROCESS "LESSON1"

PROCESS "MENU"+OPTION

4‑184
UPL Revision 6.0

Statements and Intrinsics
Product

Type
Intrinsic Procedure
Operating System

Purpose
Returns information about the software that is running the UPL program. The type of information returned includes product identification number, product version number, version number, and graphics device identification.

Syntax
Product(proddata(1))

Parameters
proddata:
Integer array of 19 elements (input/output)

The list below shows the information proddata returns about

the software.

proddata(1)
Product id code. If proddata(1) = 1 the

software running the UPL program is

Personal Designer.

If proddata(1) =2 The software running the UPL program is microDraft.

proddata(2)
Personal Designer version number (500

means version 5.00).

proddata(3)
Database version.

proddata(4)
Graphics device driver id number.

proddata(5)
Graphics device driver version number.

proddata(6)
Graphics device driver size in bytes

proddata(7)
Input device driver id number.

proddata(8)
Input device driver version number.

proddata(9)
Input device driver size in bytes.

4‑185
Statements and Intrinsics

Statements and Intrinsics

proddata(10)
Plot device driver id number.

proddata(11)
Plot device driver version number.

proddata(12)
Plot device driver size in bytes.

proddata(13)
current UPL program version number (i.e., the version of the UPL compiler that compiled the program).

proddata(14)
UPL interpreter version nurnber

proddata(15)
Operating System flag

1 =DOS

2 = DOS Extender

3 = UNIX

proddata(16)
CPU architecture flag

1 = SPARC

2 = Intel

proddata(17)
productusage

1 = demo

2 = production

proddata(18)
Surfacing flag.

0 = not installed

1 = installed

proddata(19)
Machining flag.

0 = not installed

1 = installed

4‑186
UPL Revision 6.0

Statements and Intrinsics
PutCur

Type
Intrinsic Procedure
Input/Output (Window)

Purpose
Puts the cursor in a specified row and column relative to the upper left corner of a window.

Syntax
PutCur(iwin, row, col)

Parameters
iwin:
Integer expression (input)

This parameter specifies the window number to position the

cursor in.

row:
Integer expression (input)

This parameter specifies the row number in iwin to put the

cursor. lf row is zero, the cursor's row position does not

change.

col:
Integer expression (input)

This parameter specifies the column number in iwin to put

the cursor. If col is zero, the cursor's column position does

notchange.

4‑187
Statements and Intrinsics

Statements and Intrinsics
RadDeg

Type
Intrinsic Function
Data Conversion

Purpose
Converts a real expression from radians to degrees. This function returns a real value.

Syntax
RadDeg(rexpr)

Parameters
rexpr:
Real expression (input)

This parameter specifies the real expression to convert.

4‑188
UPL Revision 6.0

Statements and Intrinsics
Read

Type
Statement
Input/Output

Purpose
Transfers data from a file to a variable in the program. The file must be opened with the Open statement.

Each Read operation is done in 3 steps:

1. Data is scanned from the file starting at the file pointer.

2. Data is interpreted and placed in the specified variables.

3. The file pointer is advanced to point to new data.

These steps are performed differently depending on the type of file, the data type of the variables, and the way the statements syntax is used.

Syntax
Read flvar, var:iexpr,var:iexpr,
Keyword modifiers

flvar:
File variable that must have been opened using the Open

statement. The file may have been opened as a text or binary

file, and may use sequential or random access. See the Open

statement for more information.

var:
Optional expression. Replace var with a variable of any data

type except file. It must be a variable, variable attribute, or

array element. The var expressions must be separated by

commas.

If the file is a text file, characters are scanned starting at the

file pointer. The Read statement scans until it encounters a

character which could not be in the text representation for

var. See Appendix E, "Intemal Data Storage Format," for

more information. The Read statement then converts these

4‑189
Statements and Intrinsics

Statements and Intrinsics
characters to the equivalent value in var's data type and stores that value in var. The file pointer is then advanced to the next unscanned character. This process repeats for the next variable in the statement. After all variables in the statement have been read, the file pointer advances to the beginning of the next line. lt ignores any data left on that line.

iexpr:
Optional integer expression, to be used with var, that allows

you to alternately specify how many characters to scan and

convert. The iexpr expression allows you to set up a format

in your text file. For example, you could read a file of

numbers arranged in columns.

Replace iexpr with a field width which is the number of

characters you want to scan, convert, and store in var. if

iexpr is specified, but the Read statement encounters a

character which would not convert to var's data type, it stops

scanning and convert the value there. A colon must precede

iexpr.

Optional punctuation. If you want to leave the file pointer

within a line, put a comma at the end of the Read statement.

lt leaves the file pointer just after the character last scanned.

When the file pointer has reached the end of the line, the file

attribute flvar.EOLN is set to true; the file pointer does not

advance further. Any subsequent Read statement ending

with a comma does not advance the file pointer. Any

subsequent Read statement without a comma moves the file

pointer to the beginning of the next line. For example, a

statement of the form "READ flvar" moves the file pointer

to the beginning of the next line and does not scan any

characters.

If the Read statement tries to scan more variables than there is data on the line, the remaining variables receive default values as follows:

4‑190

UPL Revision 6.0

Statements and Intrinsics

Data Type
Default Value

REAL

0.0

INTEGER
0

COORD

[0.0,0.0,0.0]

BOOLEAN
FALSE

STRING

"" (empty string)

If the file is a binary file, the Read statement scans and interprets the values in the file as being in the internal data storage format for binary data. See Appendix E, "Internal Data Format," for more information. No data type conversion is done. Each variable is given the value in the file starting at the file pointer and contained in the subsequent bytes. The number of bytes scanned depends on the variable's data type and its internal data storage format. The file pointer is then advanced to the next unscanned byte.

The field width iexpr and the comma at the end of the Read statement have no significance with binary files.

If random file access is used, the file pointer may also be repositioned using the flvar.POSITION or flvar.POS4 attribute. See the Open statement or Appendix B, "System Variables," for more information.

4‑191
Statements and Intrinsics

Statements and Intrinsics
Examples
‑‑‑

proc main

integer i1, i2, i3, i4

integer iarr1(10), iarr2(10), iarr3(10), iarr4(I0)

string s1:16, s2:20, s3:20, s4:20

rea1 r1, r2, r3, r4, x1, x2, x3, x4

coord c1, c2, c3, c4

boolean b1, b2, b3, b4

:

:

open datafl filename

:

read datafl, i1, s1, r1, c1, iarr1(5), b1, x1

:

read datafl, i2, s2:16, r2, c2, iarr2(5):3, x2, b2

:

read datafl, i3, s3, r3, c3, iarr3(5), x3, b3

:

read datafl, i4:5, s4:20, r4:10, c4:15, iarr4(5):5, \

x4:5, b4:1

:

end proc

‑‑‑

lf the file contained the following data (an underscore _ denotes a blank and

the <CR><LF> denotes the end of line sequence):

33This_is_a_string12345.6[3.0,4.0,5.5]435T2.2<CR><LF>

33This_is_a_string12345.6[3.0,4.0,5.514352.2F<CR><LF>

33This_is_a_string12345.6[3.0,4.0,5.5]4352.2F<CR><LF>

33___This_is_a_string____12345.6___[3.0,4.0,5.51__4

35__2.2__F<CR><LF>

The first Read statement would produce the following results:

i1 = 33, s1 = 'This_is_a_string', r1 = 12345.6,

c1 = [3.0,4.0,5.51 iarr1(5) = 435, b1 = TRUE,

x1 = 2.2

In each case the characters in the data file imply a boundary between the

variables' data. When the Read statement sees the "T"' it knows it must stop

scanning characters for an integer. Note that the declared length of the string

variable tells it when to stop scanning.

4‑192
UPL Revision 6.0

Statements and Intrinsics
The second Read statement shows how an optional field width can help clarify the implied boundaries. This is necessary for data following strings. lt is also necessary when integer and real data are adjacent to each other. In this example, variables s2 and j2 need a field width,

i2 = 33, s2 = 'This_is_a_string, , r2 =
12345.6,

c2 = [3.0,4.0,5.5], iarr2(5) = 435, x2 = 2.2,

b2 = FALSE

The third Read statement shows what would happen without the field widths to clarify the boundaries. This is probably not what is wanted.

i3 = 33, s3 = 'This_is_a_string1234' , r3 = 5.6,

c3 = [3.0,4.0,5.5), iarr3(5) = 4352, x3 = 0.0,

b3 = FALSE

The fourth READ statement uses a field width for each of the variables. Since trailing blanks are ignored for all but string data, they may be used to pad out the fields of data. This would be the way to read data arranged in columns.

i4 = 33, s4 = 'This_is_a_string____' ,

r4 = 12345.6, c4 = [3.0,4.0,5.5], iarr4(5) = 435,

x4 = 2.2, b4 = FALSE ‑‑‑

proc main

:

integer a, b, c1 d, e

integer v, w, x, y, z, final

:

open dfile datafile

:

read dfile, a, b, c, d, e

read dfile, v,

read dfile

read dfile, w, x,y,

Read

read dfile, z

read dfile, final

read dfile

:

end proc ‑‑‑

4‑193
Statements and Intrinsics

Statements and Intrinsics
If the file contained the following data:

5_10_15<CR><LF>

20_25<CR><LF>

30_35<CR><LF>

40<CR><LF>

<CR><LF>

<EOF>

The first READ yields the following: a = 5, b = 10, c = 15, d = 0, e = 0. The second READ makes v = 20 and leaves the file pointer between the 20 and the 25 on the second line. The third READ moves the file pointer to the beginning of the third line. The fourth READ makes w = 30, x =35, y = 0, and sets dfile.EOLN to true. The fifth READ makes z = 0 and moves the file pointer to the beginning of the next line. The sixth READ makes final = 40 and moves the file pointer to the beginning of the last line. The last READ would skip the empty line and set dfile.EOF to true.

4‑194
UPL Revision 6.0

Statements and Intrinsics
ReadCArray, ReadlArray, ReadRArray

Type
Intrinsic Procedure
Input/Output (Window)

Purpose
Allows fast retrieval of integer, real, or coordinate data from a binary file. lt is also useful for programs which need more than 32,767 bytes of data, the maximum amount which can be declared in a UPL program.

Your program may store large amounts of data in a file. This routine can be used to read the data into a buffer array, and then access and modify the data. The program can then write the data back to the file using the WriteCArray, WritelArray, and WriteRArray intrinsic procedures.

Syntax
ReadCArray(file, array(1))

ReadIArray(file, array(1))

ReadRArray(file, array(1))

Parameters
file:
File variable (input/output)

This parameter is the file variable for the data file. See the

Open statement for more information on file IO. The file

must be opened as a binary file. Sequential or random file

access may be used. It is suggested that you read files

written by the WriteCArray, WritelArray, and

WriteRArray intrinsic procedures, as using these

procedures with other files is complicated.

array:
Coordinate, integer, or real array of any length (input/output)

This parameter specifies the array which the program reads

the data into. lt should be declared to be large enough to hold

all the data to read in one call to ReadCArray, ReadlArray,

and ReadRArray. The amount of data read is determined by

the number of elements declared in the array. Specifically,

each call reads the number of bytes equal to the number of

4‑195
Statements and Intrinsics

Statements and Intrinsics
elements in the array multiplied by the number of bytes per element. lt must always be passed with a subscript of one, for example: array(1).

The program starts reading data at the file pointer and puts it into array. The file pointer is then placed immediately after the last byte read.

lf you are using random file access, the file pointer may point to any array in the file. This is done by setting the file.POSITION or file.POS4 attribute.

Setting the file. POSITION attribute moves the file pointer to the position which equals the value of the file.POSITION attribute multiplied by the value of the file.RECLEN attribute. That is, the file.POSITION attribute tells the program what file record to point to. The file.RECLEN attribute specifies how many bytes are in the record.

lf your program is reading a file whose arrays are all of the same size and data type, simply declare your record length to be the size of that array in bytes. This is done in the Open statement. Repositioning the file pointer is then simply a matter of setting file.POSITION to the array you want.

Setting thefile.POS4 attribute, places the file pointer at the given byte offset from the beginning of the file. (It is not effected by the file.POSITION or file.RECLEN attributes.)

If you are mixing arrays of different data types in the same file, you may find it easier to set the record length to 1 (using Reclen keyword in Open statement) and use the file.POS4 attribute.

When calculating file.POS4, take into account the difference in array element sizes. That is, a real element takes up as much as two integer elements and, a coordinate element takes six times as much as an integer element.

Since the file.POSITION attribute is itself an integer value, it can only be set as high as 32,767 bytes. Files are therefore limited to 32,767 * file.RECLEN bytes. If you want to read a larger file, use the file.POS4 attribute which will allow a byte offset of up to 2,147,483,647.

4‑196
UPL Revision 6.0

Statements and Intrinsics
Examples
‑‑

-- RRArray.upl

-- This program demonstrates use of ReadRArray.

-- The use of ReadIArray and ReadCArray are very -- similar.

-- See WriteCArray, WriteIArray, WriteRArray for -- the program WRArray.upl that will create an

-- appropriate file. ‑‑

Proc Main

integer I

integer SavePos

real RealBuffer(100)

file DataFile

-- Open the data file with the length of the

-- data record: 400 = (4 bytes per real) * 100)

open DataFile, 'File.Dat' binary reclen(400)

-- Position the file pointer to some record

-- in the file, say #25 and read it and print it.

DataFile.POSITION = 25

ReadRArray(DataFile, RealBuffer(1))

loop I = 1 to RealBuffer(1).SIZE

print RealBuffer(I),' ',

end loop

end proc

4‑197
Statements and Intrinsics

Statements and Intrinsics
‑‑

-- RXArray.upl

-- This program demonstrates use of ReadCArray,

-- ReadIArray, ReadRArray. It reads a file with

-- blocks of 1000 integers, 500 reals and 200

-- coord data in the same file. A 12 byte header -- points to the beginning of each section. The

-- program uses the POS4 attribute for

-- positioning the file pointer. See WriteCArray, -- WriteIArray, WriteRArray for the program

-- WXArray.upl which writes the data file.

-----------------------------‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑

proc main

integer IntegerSize = 2

integer RealSize = 4

integer CoordSize = 12

integer HeaderSize = 12

‑‑ Header information

integer4 StartIntegerData

integer4 StartRealData

integer4 StartCoordData

‑‑ Data buffers

integer IntegerBuffer(100)

real
RealBuffer(50)

coord
CoordBuffer(20)

integer I

integer4 DataOffset

file DataFile

‑‑ start of code –

open DataFile,'Data.fil' binary reclen(1)

-- Read in values for header.

-- Reset file pointer to beginning of file.

DataFile.POS4 = 0

read DataFile, StartIntegerData, StartRealData, \

StartCoordData

-- Read in a buffer full random integer values

-- starting after integer value 47.

-- Print them out.

4‑198
UPL Revision 6.0

Statements and Intrinsics
DataOffset = 47 * integer4(IntegerSize)

DataFile.POS4 = StartIntegerData + DataOffset

ReadIArray(DataFile, IntegerBuffer(1»

print 'IntegerBuffer='

loop I = 1 to IntegerBuffer(1).SIZE

print IntegerBuffer(I),' ',

end
loop

print

-- Read in a buffer full random real values

-- starting after real value 150.

-- Print them out.

Dataoffset = 150 * integer4(RealSize)

DataFile.POS4 = StartRealData + DataOffset

ReadRArray(DataFile, RealBuffer(1))

print 'RealBuffer='

loop I = 1 to RealBuffer(1).SIZE

print RealBuffer(I),' ',

end
loop

print

-- Read in a buffer full random coord values

-- starting after coord value 10.

Dataoffset = 10 * integer4(CoordSize)

DataFile.POS4 = StartCoordData + DataOffset

ReadCArray(DataFile, CoordBuffer(1))

print 'CoordBuffer='

loop I = 1 to CoordBuffer(1).SIZE

print CoordBuffer(I),' ',

end
loop

close DataFile

end
proc

4‑199
Statements and Intrinsics

Statements and Intrinsics
Real

Type

Statement
Declaration

Purpose
Declares the name, data type, aggregate type, and initial value of a real variable. An initial value is optional. Array variables must be declared with their maximum subscripts.

Variables of real data type contain real number values in the ranges ‑1.0E+38 to ‑1.0E‑37, 1.0E‑37 to 1.0E+38, and 0.0.

Syntax
Real rvar = rconst | rarray(iconst,...),...

Keyword modifiers

rvar:
Name of the real variable. Only the first 16 characters are

used.

rconst:
Optional literal or named real constant. This is the initial

value for a scalar variable. lf the variable is declared in the

Group section, it will be set to this value once at the

beginning of the program. If the variable is declared in a

procedure or function, it will be set to this value each time

the procedure or function is called.

rarray:
Name of the real array variable. Only the first 16 characters

are used.

iconst:
Array subscripts. These declare the variable to have

aggregate type array. Up to five subscripts may be declared.

The subscripts must be enclosed in parentheses. Arrays may

not be given an initial value.

All declaration statements must occur after the Proc, Func, and Group statements. They must appear before any other type of statements inside a procedure or function and are the only statements allowed inside the Group section.

4‑200
UPL Revision 6.0

Statements and Intrinsics
For more information, see Chapter 2, Program Structure, and Appendix E,

"Internal Data Storage Forrnat."

Examples
Real X, Y, Z

Real Delta = 0.000001, Diameter, Radius, Offset

Real Values(10,20,30)

4‑201
Statements and Intrinsics

Statements and Intrinsics
Real

Type
Intrinsic Function
Data Conversion

Purpose
Converts a Boolean, integer, integer4 or string expression to a real expression and returns the value. For Booleans, false = 0.0 and true = 1.0.

Syntax
Real(expr)

Parameters
expr.
Boolean, integer, or string expression (input)

This parameter specifies the Boolean, integer, integer4, or

string expression to convert.

4‑202
UPL Revision 6.0

Statements and Intrinsics
Return (for Functions)

Type
Statement
Flow Control

Purpose
Returns a value and passes flow of controi back to the calling procedure or function. The returned value may be used in an expression after control is passed to the calling function or procedure. Execution continues in the same statement the function call occurred in.

Syntax
Return expr

Keyword modifiers
expr:
Replace with an expression of the same data type as defined by the Return keyword in the Func statement.

Examples
RETURN R

RETURN SQRT(X^2.0 + Y^2.0 + Z^2.0)

RETURN ANS = "Y" OR ANS = "y"

RETURN BOOL

4‑203
Statements and Intrinsics

Statements and Intrinsics
Return (for Procedures)

Type
Statement
Flow Control

Purpose
Returns control to the calling procedure or function from the current procedure. Execution continues in the calling procedure on the line immediately following the procedure call.

Syntax
Return When bexpr

Keyword modifiers
When bexpr.
Optional expression. lf you use the optional When keyword, the program returns only if bexpr evaluates to true. Otherwise execution continues in the current procedure on the statement immediately following this Return statement.

Examples
RETURN

RETURN WHEN I > 10 OR X = 0.0

4‑204
UPL Revision 6.0

Statements and Intrinsics
RmvChr

Type
Intrinsic Function
String Handling

Purpose
Removes all occurrences of the given characters from a string. This function returns a new string without the characters.

Syntax
RmvChr(sexpr, setsexpr)

Parameters
Sexpr:
String expression (input)

This parameter specifies the string to remove the characters

from.

Setsexpr:
String expression (input)

This parameter specifies the charaeters to remove.

Example
‑‑ This example will print: A string of characters.

Print RmvChr("A &Str!ing $ of vcharxacters.", \

"$vx!&")

4‑205
Statements and Intrinsics

Statements and Intrinsics
Rnd

Type
Intrinsic Function
Arithmetic

Purpose
Returns a random number between 0.0 and 1.0. This function returns a real value.

Syntax
Rnd()

Parameters
The Rnd function has no parameters.

4‑206
UPL Revision 6.0

Statements and Intrinsics
RotEnt

Type
Intrinsic Procedure
Database Access

Purpose
Rotates the entities given using a transformation matrix. RotMat may be used to create the transformation matrix.

Syntax
RotEnt(miblist(1), nent, transform(1))

Parameters
miblist:
Integer4 array of nent elements (input/output)

This parameter specifies the MIB numbers of the entities to

be rotated.

nent:
Integer4 expression (input)

This parameter specifies the number of entities to be rotated.

transform:
Real array of 15 elements (input/output)

This parameter specifies the rotation of the entities. The first

nine elements of the array are used to rotate the entities.

Elements 10, 11, and 12 are the point about which the

entities are rotated.

4‑207
Statements and Intrinsics

Statements and Intrinsics
RotEntCopy

Type
Intrinsic Procedure
Database Access

Purpose
Rotates a copy of the entities given using a transformation matrix. RotMat may be used to create the transformation matrix. The copied entities are added to the end of the database.

Syntax
RotEntCopy(miblist(1), nent, transform(1))

Parameters
miblist:
Integer4 array of nent elements (input/output)

This parameter specifies the MIB numbers of the entities to

be rotated.

nent:
Integer4 expression (input)

This is the number of entities to be rotated.

transform:
Real array of 15 elements (input/output)

This parameter specifies the rotation of the entities. The first

nine elements of the array are used to rotate the entities.

Elements 10, 11, and 12 are the point about which the

entities are rotated.

4‑208
UPL Revision 6.0

Statements and Intrinsics
RotMat

Type
Intrinsic Procedure
Geometric

Purpose
Returns a transformation matrix. This matrix describes the rotation about an axis or vector. It describes the rotation only and not a point about which the entities are rotated. RotMat can provide the rotational transformation matrix for routines such as RotEnt, RotEntCopy, and RotPnt.

Syntax
RotMat(rotangle, rotvec, transform(1))

Parameters
rotangle:
Real expression (input)

This parameter specifies the angle of rotation in radians. The

positive direction is counterclockwise while looking along

the rotvec vector.

rotvec:
Coordinate expression (input)

This parameter specifies the vector to rotate about. You can

define a vector from [0,0,0] to rotvec; or you can define it by

subtracting the two coordinate values that represent points in

space.

transform:
Real array of 12 elements (input/output)

This returns the transformation matrix that will give the

rotation described by the rotangle and rotvec parameters.

4‑209
Statements and Intrinsics

Statements and Intrinsics
RotPnt

Type
Intrinsic Procedure
Geometric

Purpose
Rotates a set of points using a transformation matrix.

Syntax
RotPnt(transform(1), pnts(1), npnts)

Parameters
transform:
Real array of 15 elements (input/output)

This parameter specifies the rotation of the points. The first nine elements of the array are used to rotate the points. Elements 10, 11, and 12 are the location about which the points are rotated. The RotMat procedure may be used to create the transforrn array.

pnts:
Coordinate array of npnts elements (input/output)

On input, this parameter specifies the points to be rotated.

On output, it returns the rotated points.

npnts:
Integer expression (input)

This parameter specifies the number of points in the pnts

parameter.

4‑210
UPL Revision 6.0

Statements and Intrinsics
RowColAW

Type
Intrinsic Procedure
Input/Output (Window)

Purpose
Returns the size of an alphanumeric window as the number of rows and columns in the window. For more information, see "Input/Output (Window) Intrinsics" in the Functional Listing of Statements and Intrinsics chapter.

Syntax
RowColAW(iwin, irow, icol)

Parameters
iwin:
Integer expression (input)

This parameter specifies the alpha window number to query.

If iwin is greater than zero, the current size is returned. This

could be smaller than the defined size if other windows with

a higher priority overlay iwin, or if the on‑screen menus are

on. These cases cause the window to shrink.

lf iwin is less than zero, the maximum possible window size

is returned.

irow:
Integer variable (input/output)

This parameter returns the number of rows in the window.

icol:
Integer variable (input/output)

This parameter retums the number of columns in the

window.

4‑211
Statements and Intrinsics

Statements and Intrinsics
RowColToPix

Type

Intrinsie Procedure
Input/Output (Window)

Purpose
Converts row and column coordinates to the corresponding pixel coordinates. This procedure can be used with the DerineAW procedure to convert the dimensions of your alphanumeric window. See the the PixToRowCol procedure and "Input/Output (Window) Intrinsics" in "Functional Listing, " Chapter 3. for more information.

Syntax
RowColToPix(ixy(1), ipage)

Parameters
ixy:
Integer array of 4 elements (input/output)

On input, this parameter specifies two sets of row and

column coordinates. On output, it returns the equivalent

pixel coordinates.

This parameter may represent the lower left and upper right

corners of a window for the DerineAW procedure:

ixy(1)
Left boundary

ixy(2)
Lower boundary.

ixy(3)
Right boundary

ixy(4)
Upper boundary.

ipage:
Integer expression (input)

This specifies the graphics device page for the conversion.

4‑212
UPL Revision 6.0

Statements and Intrinsics
RpntEnt

Type
Intrinsic Procedure
Graphics

Purpose
Repaints entities on the graphics sereen. This procedure allows newly inserted or modified entities to be displayed. To be repainted, the entity must be on a layer or in a view of visibility which is selected on.

Syntax
RpntEnt(miblist(1), nent, error)

Parameters
miblist:
Integer4 array of nent elements (input/output)

This parameter specifies the MIB numbers of the entities to

be repainted.

nent:
Integer4 expression (input)

This parameter specifies the number of entities in miblist. lf

nent is zero, all visible entities in the part are repainted. lf

you set nent to zero, you must give a dummy array with one

element to the miblist parameter.

error:
Integer variable (input/output)

This parameter retums the error condition:

 0
 no errors were found.

< > 0
 a database error was found.

4‑213
Statements and Intrinsics

Statements and Intrinsics
SclEnt

Type
Intrinsic Procedure
Database Access

Purpose
Scales a set of entities by a specified amount.

Syntax
SclEnt(miblist(1), nent, scale(1))

Parameters
miblist:
Integer4 array of nent elements (input/output)

This parameter specifies the list of MIB numbers of the

entities that are to be scaled.

nent:
Integer4 expression (input)

This parameter specifies the number of entities to be scaled

scale:
Real array of 6 elements (input/output)

This array specifies a point to scale about and the X, Y, and

Z scale factors. This array should have the same values as

elements 13 through 15 of the transforination matrix. The

scale parameter could be replaced with transform(13).

4‑214
UPL Revision 6.0

Statements and Intrinsics
SclEntCopy

Type
Intrinsic Procedure
Database Access

Purpose
Scales a copy of a set of entities by a specified amount.

Syntax
SclEntCopy(miblist(1), nent, scale(1))

Parameters
miblist:
Integer4 array of nent elements (input/output)

This parameter specifies the list of MIB numbers of the

entities that are to be scaled.

nent:
Integer4 expression (input)

This parameter specifies the number of entities to be scaled.

scale:
Real array of 6 elements (input/output)

This array specifies a point to scale about and the X, Y, and

Z scale factors. This array should have the same values as

elements 10 through 15 of the transforrnation matrix. The

scale parameter could be replaced with transform(10).

4‑215
Statements and Intrinsics

Statements and Intrinsics
Send

Type
Statement
Input/Output (Window)

Purpose
Executes a Personal Designer command from within a UPL program by sending expressions to the Personal Designer command processor. After Personal Designer processes the expression, the UPL program continues.

The Send statement, is the easiest way to manipulate the database and graphics. A faster, but slightly more difficult, method is to use the database access statements Erase, Insert, Modify, and Verify. See these statements for more information. An even faster method is to use the Database Access intrinsic procedures. See Chapter 3, "Functional Listing," for more information.

Syntax
Send expr: f1: f2,...,

Keyword modifiers

expr:
an optional expression of any data type except file. After the

expression is evaluated, the result is sent to the Personal

Designer command processor as a stream of characters. The

syntax of the commands sent to the command processor is

not checked for the correct Personal Designer command

syntax. lf the command is incorrect, the system rejects the

command and continues executing the UPL program.

f1:
Optional field width to be used with expr. lt specifies the field width to set expr in. lf the field width is positive, the expression is printed rightjustified. lf the field width is negative, the expression is printed leftjustified.

f2:
Optional expression to be used with f1. This expression formats the decimal places for real and coordinate values. Replace f2 with the number of decimal places you want the value sent in. If f2 is negative, the number is printed in exponential form.

4‑216
UPL Revision 6. 0

Statements and Intrinsics
When you run a program with the Send statement, you see the expressions displayed on the screen as they are sent. You can control the display of characters with the Echo statement. Use Echo Off to suppress the display and Echo On to resume the display after the Send statement is executed. Initially, Echo is set to On.

To change the window which the commands are echoed in, use the SendWin system variable to specify the window number. For more information, see DefineAW and the SendWin variable in Appendix B, "System Variabies."

When writing expressions for the Send statement, use quotes around each string, and commas to separate each expression. Verify the correct syntax for the command before sending it, since even one misplaced comma will prevent the command from being executed.

Before you use the Send statement in a UPL program, first execute an empty Send statement to send back the first character, which is ignored. This allows the UPL program to have control before Personal Designer requests user input.

The last character you send in a Send statement is stored in the LastChar system variable.

lf the last item in the Send statement is a comma, then no <CR> is sent. Otherwise, it is.

lt is possible to send part of a Personal Designer command in one Send statement and the remainder of the command in another Send statement. However, there are some statements and procedures which should not be used while only a portion of a Personal Designer statement has been sent. These include all database access statements and intrinsic procedures, and the user interface intrinsic procedures which allow access to the Getdata processor. See Chapter 3, "Functional Listing," for more information.

Many Personal Designer commands, such as INSERT TFILE, require access to files. lf you have three or four files open and invoke these commands with the Send statement, you may receive an error message such as "VNP table file read/write error" or "Modifier file read/write error." You must close one of the open files temporarily to allow the command to be executed.

4‑217
Statements and Intrinsics

Statements and Intrinsics
Examples
SEND 'INS LIN:X ',X,'Y ',Y,

SEND 'Z ',Z:10:3

SEND
‑‑ Sends only a <CR>

4‑218
UPL Revision 6.0

Statements and Intrinsics
SetBit

Type
Intrinsic Procedure
Arithmetic

Purpose

Sets the value of a bit in the bittable parameter. This value is located at the offset specified by the ibit parameter. See the GetBit procedure for more information.

Syntax
SetBit(bittable(1), ibit, ival)

Parameters
bittable:
Integer variable or array (input/output)

On input, this parameter specifies a table of bits. Each bit

can have a value of zero or one. Each integer element in

bittable can store 16 binary bit values. On output, it returns

the bit table with the new bit value set.

ibit:
Integer expression (input)

This parameter specifies the offset in the bittable(1)

Parameter you want returned. Bit 0 is the least significant bit

of the first integer in bittable.

ival:
Integer expression (input)

This parameter specifies the value to set the bit to:

‑1
The bit changes to the opposite of whatit currently

is. This is an "exclusive OR" operation.

0
sets the bit to 0.

1
sets the bit to 1.

4‑219
Statements and Intrinsics

Statements and Intrinsics
SetHelp

Type
Intrinsic Procedure
User Interface

Purpose
Allows you to set up on‑line help for a UPL program. With SetHelp, you can customize your help system to behave like the Personal Designer help system. See the HELP command in the Personal Designer and microDRAFT Revision 6.0 User Reference Guide for more information.

Make a call to SetHelp before each call to the AskModifiers, GetDig, GetEnd, or GetEnt procedures. This ensures that your users can access the appropriate help screen any time they are prompted for data.

See Appendix H, "Writing Personal Designer Commands," for more information.

Syntax
SetHeip(helpfn, vnpindex, modifierindex, getdataindex)

Parameters
helpfn:
String Expression (input)

This parameter specifies the name of the help file to use to

get the help information from. Before you exit your UPL

program, you should use SetHeip with the helpfn parameter

set to a blank string (""). This will cause the help system to

use the default Personal Designer help file.

vnpindex:
Integer expression (input)

This parameter specifies the verb/noun table index number.

This is usually set to one for UPL program help files. See

Appendix H, "Writing Personal Designer Commands", for

more information.

You should set the verb/noun table index number even though you will not pass control of your UPL program to the verb/noun processor for a long period of time. All modifier

4‑220
UPL Revision 6.0

Statements and Intrinsics
and Getdata processor help is associated with the verb/noun processor index, and the user may need help with these portions of the command as well as on the verb/noun portion of your customized command.

modifierindex:
Integer expression (input) This parameter specifies the modifier tabie index number. This is usually set to one for UPL program help files.

getdataindex:
Integer expression (input)

This parameter specifies the Getdata processor help index number.

4‑221
Statements and Intrinsics

Statements and Intrinsics
SetLayer

Type
Intrinsic Procedure
Graphics

Purpose
Sets the echo display of a given layer or all layers. lf the layernumber parameter is zero, all layers are set. Otherwise only the single layer specified will be set. For more information, see GetLayer and the Personal Designer command ECHO LAYER in the Personal Designer and microDRAFT Revision 6. 0 User Reference Guide.

Syntax
SetLayer(layernumber, howtosetlayer)

Parameters
layernumber:
Integer expression (input)

This parameter specifies the layer number to set. Input

values are 1 through 256. A zero sets all layers.

howtosetlayer:
Integer expression (input)

This parameter specifies how to set the layer:

0
turns layer off.

1
turns layer on.

2
turns off layers on, and on layers off.

4‑222
UPL Revision 6.0

Statements and Intrinsics
SetMenulnfo

Type
Intrinsic Procedure
User Interface

Purpose
Defines a new on‑screen menu area or updates an existing one. An on‑screen menu area may contain either an icon or an icon set. For more information, see the Personal Designer and microDRAFT Revision 6. 0 User Reference Guide.

The menu area to create or update is determined by areacorners. lf this matches an existing area in setnumber, the menu area is updated with the new cmdstring; its menu area number is then returned in areanumber. lf the area does not match, a new menu area is created in setnumber with cmdstring; this is assigned a new area number which is returned in areanumber.

Note that the menu area is limited to the be within the area defined for setnumber. Be aware that if you define a menu area outside of the setnumber area, the menu area will shrink to be within the setnumber area.

Syntax
SetMenuInfo(areanumber, setnumber, areacorners, cmdstring)

Parameters
areanumber:
Integer variable (input/output)

On input, this parameter specifies the menu area number to

be created or modified. On output, it specifies the newly

created or modified menu area number.

setnumber:
Integer expression (input)

This parameter specifies the icon set number of the new or

modified area. The set number is also known as the layer

number.

areacorners:
Integer array of 4 elements (input/output)

This parameter specifies the lower left and upper right

corners of the menu area.

4‑223
Statements and Intrinsics

Statements and Intrinsics
cmdstring:
String expression (input)

This parameter specifies the new or modified command

string to be associated with the new area.

4‑224
UPL Revision 6.0

Statements and Intrinsics
SetTagField

Type
Intrinsic Procedure
Database Access

Purpose

Sets a tag field on an entity. lf the entity does not have a tag, the procedure will automatically add one to it.

There are two parts to an entity tag. The first part is an entity tag value. Entities may have only one tag value. See TagMib and MibTag for more information.

The second part of an entity tag is the tag field. This is a text string associated with an entity tag. An entity may have many tag fields.

Syntax
SetTagField(mib, fieldnumber,fieldstring)

Parameters
mib:
Integer4 expression (input)

This parameter specifies the MIB number of the entity to set

the tag field for. If the entity does not have a tag, the

procedure will automatically add one to it. The tag will be

the next available number in the sequence. See the

GetTagField procedure for more information.

An entity MIB number can be determined in several ways, one of which is with the TagMib procedure.

fieldnumber:
Integer expression (input)

This parameter specifies the field number to set for the

entity. Field zero cannot be set because it holds the system

tag number. lf there are less tags than specified by

fieldnumber, the system fills in empty fields until it reaches

the number specified in fieldnumber.

fieldstring:
String expression (input)

This parameter specifies the text string to put into the field.

There is a total of 996 bytes for all tag fields. Each tag field

uses two bytes. Each character given in fieldstring uses one

byte. Be sure you do not exceed this limit.

4‑225
Statements and Intrinsics

Statements and Intrinsics
ShadeColor

Type
Intrinsic Function
Graphics

Purpose
Returns an integer which is the color index number for a given color and shade. This value may be used in routines that use a color index number.

Syntax
ShadeColor(color shade)

Parameters
color:
Integer expression (input)

This parameter specifies the color index number. Values are

0 through 7:

0
black.

1
red.

3
blue.

4
yellow.

5
cyan.

6
magenta.

7
white.

shade:
Integer expression (input)

This parameter specifies the shade value. Values range from

1 through 127; 1 is the darkest and 127 is the lightest. Shade

64 is the brightest.

From 64 through 127, equal amounts of the two colors

complimentaty to the given color are added on an increasing

basis until the color reaches white.

4‑226
UPL Revision 6.0

Statements and Intrinsics

Sin

Type
Intrinsic Function
Trigonometric

Purpose
Returns the sine of an angle. This function returns a real value.

Syntax
Sin(rexpr)

Parameters
rexpr:
Real expression (input)

This parameter specifies the angle in radians whose sine will

be returned.

4‑227
Statements and Intrinsics

Statements and Intrinsics
Size

Type
Intrinsic Function
System Interface

Purpose
This intrinsie is superceded by Size4 for UPL version 5.0 and later. It is retained for compatibility with programs written under earlier versions. Returns the number of 128 byte blocks in a given file. This function returns an integer.

Syntax
Size(sexpr)

Parameters
sexpr:
String expression (input)

This parameter specifies a string expression that is the name

of a file. Zero is returned if the file does not exist or has a

length of zero.

4-228
UPL Revision 6.0

Statements and Intrinsics
Size4

Type
Intrinsic Function
System Interface

Purpose
Returns the number of bytes in a file. This function returns an integer4. lt supercedes the intrinsic Size in UPL version 5.0 and later.

Syntax
Size(sexpr)

Parameters
sexpr:
String expression (input)

This parameter specifies a string expression that is the name

of a file. Zero is returned if the file does not exist or has a

length of zero.

4‑229
Statements and Intrinsics

Statements and Intrinsics
Sleep

Type
Statement
Flow Control

Purpose
Causes a UPL program to "go to sleep" or wait in the background for a specified number of verb/noun processor (VNP) commands. No other UPL program may be run while a UPL program is in the sleep mode.

Syntax
Sleep n, vnp,...

Keyword modifiers
n:
Optional expression. This specifies the number of Personal

Designer commands to execute before the UPL program

"awakes" or begins to run. lf n is a negative one, the UPL

program will not begin running until the Personal Designer

AWAKE command is given. Note that the AWAKE

command can also be used when n is not negative one. The

default value for n is one.

vnp:
Optional expression that can be used only if n is given.

These are VNP numbers. lf all the numbers are positive,

only those commands may be input by the user. lf any of the

numbers are negative, all commands except the ones given

will be accepted. The AWAKE command cannot be

excluded.

VNP numbers can be determined for any Personal Designer

command by using the Personal Designer command SELect

MESSage HELP. lf this command is used, the VNP number

for each command is displayed before the command is

executed. To turn off the display, use the Personal Designer

command SELect MESSages NORMal.

You can also obtain VNP index numbers by looking at the

file PDVNP.DEF, or by creating the file with the BLDF

utility and using the following file as input:

4‑230
UPL Revision 6.0

Statements and Intrinsics
BEGIN VNP

FILE \PD5\GCD3.VNP

DUMP PDVNP.DEF

END VNP

END

Examples
Sleep

Sleep 10

Sleep J*20

‑‑allows only INS CIR, INS LIN,

‑‑INS STG and REPAint

Sleep 5, 203, 2001, 2022, 1002

‑‑allow all commands

‑‑except INS CIR, INS LIN, INS STG and REPAint

Sleep K+2, ‑1002, ‑203, ‑2001, ‑2022

4‑231
Statements and Intrinsics

Statements and Intrinsics
String

Type
Statement
Declaration

Purpose
Declares the name, data type, aggregate type, and initial value of a string variable. An initial value is optional. Array variables must be declared with their maximum subscripts.

Variables of string data type contain strings of characters from the ASCII Character Set. See Appendix F, "ASCII Character Set," for more information.

Syntax
String svar: iconst1 = sconst | sarray(iconst2,...): iconst1,...
Keyword modifiers
svar:
Name of the string variable. Only the first 16 characters are used.

iconst1:
Maximum length of the string. This specifies how many characters can be stored in the string. This must be a literal or named integer constant.

sconst:
Optional literal or named string constant. lt is the initial value for a scalar variable. If the variable is declared in the Group section, it will be set to this value once at the beginning of the program. lf the variable is declared in a procedure or function, it will be set to this value each time the procedure or function is called.

sarray:
Name of the string array variable. Only the first 16 characters are used.

iconst2:
array subscripts. These declare the variable to have aggregate type array. Up to five subscripts may be declared. The subscripts must be enclosed in parentheses. Array variables may not be given an initial value.

4-232
UPL Revision 6.0

Statements and Intrinsics
All declaration statements must occur after the Proc, Func, and Group statements. They must appear before any other type of statements inside a procedure or function and are the only statements allowed inside the Group section.

For iyiore information, see Chapter 2, "Program Structure," and Appendix E, "Internal Data Format."

Examples
String FileName:60

String CommandPrompt:18 = 'Type next command:'

String Answer:1

String NameTable(1000):16

4‑233
Statements and Intrinsics

Statements and Intrinsics
String

Type
Intrinsic Function
Data Conversion

Purpose
Converts real, coordinate, integer, integer4, and Boolean expressions to a string value and returns the value. The field width and the number of decimal places are optional; if used, they must be integer constants. If there are too many characters for the specified field width, characters are dropped from the right of the field.

Syntax
String(expr: f 1: f2)

Parameters
expr:
Real, coordinate, integer, integer4 or Boolean expression (input). This specifies the real, coordinate, integer, integer4 or Boolean expression that is converted to a string.

f1:
Optional expression that can be used with expr. This lets you format the output of the expression by indicating the field width. Replace f1 with the field width the expr value is to be printed in. The expression is printed rightjustified if the field width is positive and left justified if the field width is negative. Always choose a field width that will accommodate the length of the longest expression to be printed.

lf you try to print an expression that is longer than the given field width, the expression is truncated on the right. lf no field width is given, the statement uses any field width that is necessary to print the value.

f2:
Optional expression that can be used with f1 to format the

decimal spacing for real and coordinate values. Replace f2

with the number of places to the right of the decimal point.

The decimal point uses one decimal place. lf f2 is negative,

4‑234
UPL Revision 6.0

Statements and Intrinsics
the number is printed in exponential form. Note that trailing zeros will be added to fill out the field if the value can be exactly expressed in fewer decimal places than specified by f2. lf the number cannot be expressed in exactly f2 decimal places, it will be rounded up. The default value is to print all significant digits and one trailing zero.

4‑235
Statements and Intrinsics

Statements and Intrinsics
StrWide

Type
Intrinsic Procedure
Database Access

Purpose
Returns a new set of string vertices at an offset from an existing set of vertices. The new set of vertices defines a "wide string."

Syntax
StrWide(vertices(1), nvert, width, just, viewno, newveritces(1), newnverts)
Parameters
vertices:
Coordinate array of nvert elements (input/output)

This parameter specifies the existing set of vertices.

nvert:
Integer expression (input)

This parameter specifies the nurnber of vertices in the

vertices parameter. The maximum is 333 vertices.

width:
Real expression (input)

This specifies the width of the wide string. This parameter is

the offset from the existing vertices that will be used to

generate the new set of vertices.

just:
Integer expression (input)

This parameter specifies string justification:

‑1
leftjustification.

0
center justification.

1
rightjustification.

A vector between the first and second vertices establishes the

direction for justification.

viewno:
Integer expression (input)

This parameter specifies the view transformation to use for

generating the new set of points. The wide string will be

generated in the X/Y plane of this view number. View one is

model coordinates.

4‑236
UPL Revision 6.0

Statements and Intrinsics
newvertices:
Coordinate array of newnvert elements (input/output)

This parameter returns the wide string vertices.

newnvert:
Integer variable (input/output)

This returns the number of vertices in the newnvert

Parameter.

4‑237
Statements and Intrinsics

Statements and Intrinsics
SqRt

Type
Intrinsic Function
Arithmetic

Purpose
Returns the square root of a real expression. This function returns a real value.

Syntax
SqRt(rexpr)

Parameters
rexpr:
Real expression (input)

This parameter specifies the real expression whose square

root will be returned.

4‑238
UPL Revision 6.0

Statements and Intrinsics
SysVarI

Type
Intrinsic Procedure
Operating System

Purpose
Returns or sets the values of Personal Designer system variables whose data type is integer.

Syntax
SysVarI(iexpr, ival)

Parameters
iexpr:
Integer expression (input)

This parameter speeifies the system variable to return or set If

its value is positive, the variable is returned in ival. lf its value is

negative, the variable is set to the value in ival.

The variables are shown in the list below. All of the variables

can be read. Variables marked with an asterisk may be set as

well. Only advanced users should set these system variables.

Incorrect use could damage or destroy your part database. lt is

best not to change any variables you do not understand.Refer to

the lists below for Personal Designer system variables and

system colors.

ival:
Integer array (input/output)

This parameter returns the values of the Personal Designer

system variabies if ivar is positive. lf ivar is negative, it

specifies the input value. The size of the array depends on the

value of the ivar parameter. The size of the array depends upon

the information being returned or set

1 *
currently selected color

2 *
currently selected font

3
currently selected layer

4‑239
Statements and Intrinsics

Statements and Intrinsics

4
currently selected view

5
no. of entities in part, including erased entities

6
on‑screen menu on/off flag

7
echo command flag

0 = all echoing on

1 = equivalent to Personal Designer 'echo comm off

2 = equivalent to UPL 'echo off

8
journal file flag

9
menu no. of menu that cursor is currently over

10
current number of active icon boxes

11
current graphics cursor location returned as

X and Y pixel coordinates.

12
current CPL number returned; 0 is returned if no CPL

is active)

13
network flag

0 = no network active

1 = network active

14
drawing read only flag

0 = read only

1 = read/write

System Colors

101*
digitize marker color.

102*
window entity box color.

103*
normal cross hair.

104*
grid dot color for quadrants + + and ‑-.

105*
default entity color.

106*
system text color.

107*
user text color.

108*
entity identification cross hair color.

109 *
grid dot color for quadrants ‑+ and +‑.

4‑240
UPL Revision 6.0

Statements and Intrinsics
110*
notused.

111*
icon highlight color used by edit menu command.

112*
notused.

113*
on‑screen icon menu cursor color.

114*
message text color.

115*
warning message text color.

116*
error message text color.

117*
cross‑hatched X,Y coordinate color.

118*
helptextcolor.

119 *
general window text color.

120*
menu icon highlight color.

1016
Read status of autosave on = 1, off = 0

1100
Read currently selected font number

1140 ‑ 1155*
A 16‑byte buffer which may be used to pass data between UPL programs. This buffer must be accessed two bytes at a time, treated as integers. Other values may be stored by using based variables.

1217 ‑ 1222*
database header bit flags (bytes 144‑127 of

header)

1233*
XH (crosshatch) solid fill flag

0 ‑ normal, depends on pattern #

1 ‑ XH solid fill off

2 ‑ all XHs are solid filled

1242
maximum number of entities in the Active Entity

Table

1249*
beep control, 0 = on, 1 = off

1254
UNDO, 1 = on, 0 = off

1256
coordinate display, 1 = on, 0 = off

1286
last MIB number read in database search

1301
CPL indicator axes displayed, 1 = on, 0 = off

4‑241
Statements and Intrinsics

Statements and Intrinsics

1302
MV number containing most recent entity pick

(if multiple entity pick such as a WIN, MV

number containing last entity found is returned)

1303
MVs, 1 = on, 0 = off

1311
MIB number of last entity that was stored in

the memory portion of the display list

1312*
Getdata angle lock, 1 = on, 0 = off

1313*
Getdata color mask

1314*
figure activate flag, 0 = no, 1 = yes, 2 = ask

1333*
next available group number

1375
perspective, 1 = on, 0 = off

1379*
Read and/or set/clear "SEL TEXT OFF/ON";

display text, 1 = on, 0 = off

1385
hard fonts, 1 = on, 0 off

1387*
database pack flag, 0 no, 1 yes, 2 = ask

1474*
visibility flag, 1 = VCON, 0 VALL

1511*
Read and/or set/clear "SEL GRID ON/OFF';

grid on = 1, grid off = 0

1512*
Read and/or set MIB number where next entity

pick search will start.

Note that SysVarl variables 2001‑2038 are dimensioning variables. They contain the values currently in effect in the system. This data is initialized when the part is opened by reading the MD subrecord of the Part Parameter Entity (PPE). When the part is filed, Personal Designer updates the PPE entity. Between part initialization and filing, use these SysVarl variables to obtain the correct values.

2001 *
dimensioning arrow head type

2002*
dimensioning precision

2003*
dimensioning tolerance precision

2004*
diameter dimensioning type

2005*
suppress both witness lines? no 0, yes <> 0

2006*
suppress first witness lines? no 0, yes <> 0

2007*
suppress second witness lines? no = 0, yes <> 0

2008*
display both witness lines? no = 0, yes <> 0

2009*
VALL for dimensions? no 0, yes <> 0

2010*
VCON for dimensions? no 0, yes <> 0

4‑242
UPL Revision 6.0

Statements and Intrinsics

2011*
point to point dimension? no = 0, yes <> 0

2012*
horizontal dimension? no = 0, yes <> 0

2013*
vertical dimension? no = 0, yes <> 0

2014*
dimension arrows in? no = 0, yes <> 0

2015*
dimension arrows out? no = 0, yes <> 0

2016*
auto justify dimension text? no = 0, yes <> 0

2017*
leftjustify dimension text? no = 0, yes <> 0

2018*
center dimension? no = 0, yes <> 0

2019*
no dimension centering? no = 0, yes <> 0

2020*
prefix dimension text? no = 0, yes <> 0

2021*
suffix dimension text? no = 0, yes <> 0

2022*
no diameter symbol? no = 0, yes <> 0

2023*
diameter symbol? no = 0, yes <> 0

2024*
diameter symbol word? no = 0, yes <> 0

2025*
align dimension? no = 0, yes <> 0

2026*
do not align dimension? no = 0, yes <> 0

2027*
ANSI dimensioning? no = 0, yes <> 0

2028*
JIS dimensioning? no = 0, yes <> 0

2029*
dimension feet mode? no 0, yes <> 0

2030*
dimension inch mode? no 0, yes <> 0

2031*
dimension tolerance type

2032*
use comma in dimension numbers?

no = 0, yes <> 0

2033*
use decimal point in dimension numbers?

no = 0, yes <> 0

2034*
have trailing zeros in dimension numbers?

no = 0, yes <> 0

2035*
do not have trailing zeros in dimension numbers?

no=O,yes<>0

2036*
DIN dimensioning? no = 0, yes <> 0

2037*
have leading zeros in dimension numbers?

no = 0, yes <> 0

2038*
do not have leading zeros in dimension numbers?

no = 0,yes<>0

4‑243
Statements and Intrinsics

Statements and Intrinsics
SysVarI4

Type

Intrinsic Procedure
Operating System

Purpose
Returns or sets the values of Personal Designer system variables whose data type is integer4.

Syntax
SysVarI4(iexp, i4val)

Parameters
iexpr:
Integer expression (input)

This parameter specifies the system value to return.

Currently there is only one Integer4 system value defined.

1 = number of entities in the part database.

i4val:
Integer4 array (input/output)

This parameter returns the values of the Personal Designer

system variable specified by iexpr.
4‑244
UPL Revision 6.0

Statements and Intrinsics
SysVarR

Type

Intrinsic Procedure
Operating System

Purpose
Returns the values of Personal Designer system variables whose data type is real.

Syntax
SysVarR(rexp, rval)

Parameters
rexp:
Integer expression (input)

This parameter specifies the system value to return:

1
current screen scaie factor.

2
current screen extents in view space.

3
current construction depth.

4
current drawing extents in model space.

Additional values are listed below.

rval:
Real array (input/output)

This parameter returns the value of the system variables. The

size of the array depends on the value of rexp. Refer to the

following system variable list.

When rvar = 1,
rval (1) screen scale factor

When rvar = 2,

rval (1) minimum X

rval (2) maximum X

rval (3) minimum Y

rval (4) maximum Y

4‑245
Statements and Intrinsics

Statements and Intrinsics

When rvar = 3,
rval (1)
construction depth

When rvar = 4,

rval(1)
minimum X extent

rval(2)
minimum Y extent

rval(3)
minimum Z extent

rval(4)
maximum X extent

rval(5)
maximum Y extent

rval(6)
maximum Z extent

Notes

Text, Dimension, and Grid Variables:

SysVarR variabies 1239‑1241, 1252‑1255, and 2000‑2001 contain the values currently in effect in the system. This data is initialized when the part is opened by reading the MD subrecord of the Part Parameter Entity (PPE).

When the part is filed, Personal Designer updates the PPE entity. Between part initialization and filing, use these SysVarR variabies to obtain the correct values.

Other System Variables

Note that all variables can be read. An asterisk indicates a variable can also be set..

1113

soft fonts scale factor

1118

trap size in screen inches

1119

Read and/or set digitize mark ('gleep') size in screen

inches

1123

plotting point entity size in inches

1124

Read and/or set screen point entity size in inches

1158‑1163
Read drawing extents X,YZ min and X,YZ max

1181 ‑1183
model space coordinates of perspective eye point

1184‑1186
view space coordinates of perspective eye point

1187

perspective depth

4‑246
UPL Revision 6.0

Statements and Intrinsics

1192*
Read and/or set ZOOM ALL border percent factor

1200
global scale factor

1223 ‑ 1225*
Read and/or set X,YZ model space location of most recent digitize

1239*
Read and/or set default text entity line spacing

1240*
Read and/or set default text entity height

1241 *
Read and/or set default text entity width

1252 ‑ 1253*
Read and/or set grid origin x,y

1254 ‑ 1255*
grid increment x,y

2001 *
dimension angle

2002*
dimension text height

2003*
dimension text width

2004*
dimension arrow head size

2005*
dimension offset

2006*
dimension scale

2007*
dimension both tolerances

2008*
dimension positive tolerance

2009*
dimension minus tolerance

2010*
dimension tolerance text height

2011 *
dimension text line spacing

3001 ‑ 3016*
soft font definition arrays. Each soft font definition

contains 10 numbers, so a REAL array dimension to at least 10 must be used.

Part Extents:

SysVarR variables 1158‑163 are the part extents. These

values are not initialized until a ZOOM ALL or REGEN is executed. Until

then, the program must directly access the EX subrecord of the PPE to

obtain the part extents.

Other System Variables:

SysVarR variables 1113‑1119, 1123‑1124, 1158‑1163, 1181‑1187, 1192, and 1200‑1225 are not stored in the part database. Instead they are initialized form the file PD.CFG but are not written back to it.

4‑247
Statements and Intrinsics

Statements and Intrinsics
SysVarS

Type

Intrinsic Procedure
Operating System

Purpose
Returns or sets the values of Personal Designer system variables whose data type is string.

Syntax
SysVarS(ivar, sval)

Parameters
ivar:
Integer expression (input)

This parameter specifies the system value to return or set. If

the number is positive the value is returned as speeified in

the list below. lf the number is negative, you can set the

value specified in the list below. Currently only number 50

can be set; all the numbers can be returned:

1 ‑ 20 = file names of device drivers, support, and temporary

data files:

1
Graphics deviee driver.

2
Input device driver.

3
Initial plot device driver.

4
Low level 10 driver.

5
Verb/noun command table.

6
Prompts/message file.

7
Help file.

8
Macro definitions.

9
Initial tablet menu file.

10
Initial color/pen table.

4‑248
UPL Revision 6.0

Statements and Intrinsics
11
Undo (OOPS) transaction file.

12
Start‑up UPL program.

13
Initial text font definition.

14
Modifier words.

15
GetData command words.

17
MIB file name.

18
PDF file name.

19
Initial on‑screen menu definition file.

20
Entity list file.

50
Current part file name; this can be set and

returned using sval. lt is the name the file will be

written to if you file the part.

51
User/login name

52
Network name

sval:
String variable (input/output)

This parameter retums the string system data if ivar is

positive. lt specifies the string value if ivar is negative. The

size of the string depends on the value of the ivar parameter.

The string may be up to 64 characters long.

4‑249
Statements and Intrinsics

Statements and Intrinsics
Tan

Type
Intrinsic Function
Trigonometric

Purpose
Returns the tangent of an angle. This function returns a real value.

Syntax
Tan(rexpr)

Parameters
rexpr:
Real expression (input)

This parameter specifies the angle (in radians) whose tangent

will be returned.

4‑250
UPL Revision 6.0

Statements and Intrinsics
TagMib

Type

Intrinsic Procedure
Database Access

Purpose
Returns the MIB number of a tagged entity.

There are two parts to an entity tag. The first part is an entity tag value. This is an integer which starts at zero and grows to over four million. An integer this size cannot be supported in UPL, so the number is specified as a string of 10 characters. An entity may have only one tag value.

The second part of an entity tag is the tag field. This is a text string associated with an entity tag. An entity may have many tag fields. See SetTagField and GetTagField for more information.

Syntax
TagMib(tagvalstr,mib)

Parameters
tagvalstr:
String expression of 10 characters (input)

This parameter specifies the tag value to find an MIB

number for.

mib:
Integer4 variable (input/output)

This parameter retums the MIB number of the entity with

the tag value. A zero is returned if no entity can be found

with the given tag value.

4‑251
Statements and Intrinsics

Statements and Intrinsics
TextColor

Type
Intrinsic Procedure
Input/Output (Window)

Purpose
Sets the color of the text drawn in the alphanumeric windows. The Print, Accept (with a Prompt modifier), and Display statements use this color when displaying text.

Syntax
TextColor(color)

Parameters
color:
Integer expression (input)

This parameter specifies the color number to use for the text.

Values are 0 through 15 and 101 through 120. For color

values 0 through 15, refer to the SELECT COLOR

command in the Personal Designer and microDRAFT

Revision 6. 0 User Reference Guide.

If color is greater than 100, the actual color number is

obtained from the color table given in the configuration file.

For example, if color = 106, the sixth value from the color

table would be used as the color value. For color values 101

through 120 see SysVarl.

4‑252
UPL Revision 6.0

Statements and Intrinsics
Time

Type
Intrinsic Function
System Interface

Purpose
Returns the current system time in the format: HH:MM:SS.SS. This function returns a string value 11 characters long.

Syntax
Time()

Parameters
The Time function has no parameters.

4‑253
Statements and Intrinsics

Statements and Intrinsics
Transpose

Type
Intrinsic Procedure
Geometric

Purpose
Returns a matrix transposed about its diagonal elements. This procedure is useful for transposing a transformation matrix. See Appendix E, "Internal Data Format" for information on the Transformation matrix.

Syntax
Transpose(transform(1))

Parameters
transform:
Real array of 15 elernents (input/output)

On input, this specifies the transforrnation matrix to be

transposed. Only the first nine elements of transform are

modified. On output, this parameter returns the transposed

matrix.

4‑254
UPL Revision 6.0

Statements and Intrinsics
TwoPi

Type
Intrinsic Function
Trigonometrie

Purpose
Returns the real value equal to 6.283185.

Syntax
TwoPi()

Parameters
The TwoPi function has no parameters.

4‑255
Statements and Intrinsics

Statements and Intrinsics
UpperCase

Type
Intrinsic Function
String Handling

Purpose
Returns a string with all lower case letters to converted upper case letters.

Syntax
UpperCase(str)

Parameters
str:
String expression (input)

This parameter specifies the string to convert. Uppercase

letters will stay in uppercase. Any characters that are not

letters will stay the same.

Example
String Command: 20

:

Command = "INSert LINE:"

‑‑ this will print: "INSert LINe:"

Print Command

‑‑ this will print: "INSERT LINE:"

Print Uppercase (Command)

4‑256
UPL Revision 6.0

Statements and Intrinsics
VCross

Type

Intrinsic Funetion
Geometric

Purpose
Returns a vector (or cross) product of two vectors represented by coordinate expressions and returns a vector represented by a coordinate value equal to (cexpr2 x cexpr1).

Syntax
VCross(cexpri, cexpr2)

Parameters
Cexpr1:
Coordinate expression (input)

This parameter specifies the endpoint of a veetor (starting at

[0,0,0]) that is to be cross multiplied.

cexpr2:
Coordinate expression (input)

This parameter specifies the endpoint of the other vector

(starting at [0,0,0]) that is to be multiplied.

NOTE: A coordinate value representing a vector is obtained

by subtracting the coordinate of the starting point of a vector

from its ending point. For example, if a vector is directed

from coordinate CI to coordinate C2, it can be represented

by the coordinate C2 ‑ C 1.

4‑257
Statements and Intrinsics

Statements and Intrinsics
VDot

Type
Intrinsic Function
Geometric

Purpose
Returns a real equal to a dot (scalar) product of cexpr1 and cexpr2.

Syntax
VDot(cexpr1, cexpr2)

Parameters
cexpr1:
Coordinate expression (input)

This parameter specifies the endpoint of a vector (starting at

[0,0,0]) that is to be dot multiplied.

cexpr2:
Coordinate expression (input)

This parameter specifies the endpoint of the other vector

(starting at [0,0,0]) that is to be dot multiplied.

NOTE: A coordinate value representing a veetor is obtained by subtracting the coordinate of the starting point of a vector from its ending point. For example, if a vector is directed from coordinate C 1 to coordinate C2, it can be represented by the coordinate C2 ‑ C 1.

4‑258
UPL Revision 6.0

Statements and Intrinsics
Verify

Type
Statement
Database Access

Purpose
Returns information about existing entities in the current drawing database. Only the current file may have entities verified.

Entities are referenced by Master Index Block (MIB) numbers. The number identifies an entity and gives its location in the database. An MIB number is assigned when an entity is inserted into the part database by Personal Designer or a UPL program. The number remains valid until the part is filed or exited with the pack database option.

Syntax
Verify enttype entloc entatts entdata

Keyword modifiers
enttype:
Optional keyword that specifies or returns the type of entity

to be verified. lf you know what type of entity you want to

verify, replace enttype with one of the following keywords:

Line, String, Arc, Text or Point. The enttype keyword must

directly follow the Verify keyword. The Verify statement

will only execute entities of the given type.

lf you want to find out what type of entity is being verified,

specify the following enttype keyword instead:

EntTyp(ivar)

Replace ivar with an integer variable which returns the

following codes for the verified entity's type:

1
Line.

2
String.

3
Arc.

4
Text.

4‑259
Statements and Intrinsics

Statements and Intrinsics

5
Point.

6
Linear dimension.

7
Label point dimension.

8
Radial dimension.

9
Angular dimension.

10
Cross‑hatching.

11
Figure instance.

12
Diameter dimension.

13
Multiple view.

14
Ellipse.

15
Construction line.

16
Curve (cpole).

17
Surface (spole).

18
Plane.

30
NURB curve

31
NURB surface

35
3‑D Tool path

36
2 1/2‑D Tool path

145
Display image.

146
View.

147
Figure imagelist.

148
Extents.

entloc:
Specifies which entity to verify. You must use an entloc

keyword in this statement. The entloc keyword can be used

in two ways; the one you use depends on whether you know

the MIB number of the entity to be modified.

lf you know the entity's MIB number, use this forrn for

entloc:

4‑260
UPL Revision 6.0

Statements and Intrinsics
EntId(i4expr)

Replace i4expr with an integer4 expression for the MIB number. Some intrinsie procedures and functions, such as GetEnt, allow the user to digitize entities in the graphics window. Their MIB numbers are then available to the program. Others, such as FindProp and TagMib, will return an MIB number when given non‑graphical information such as the entity's properties or tags.

If you do not know the entity's MIB number, you may use one of the following keywords for entloc:

First

Verifies the first entity in the database. This will initialize the database search.

Next Verifies the next entity in the database. This keyword allows the program to step through the database sequentially and verify each entity. Each time a Verify Next statement is executed, the next entity in the database is verified. A Verify Next statement may also be used after a Verify Entld(i4expr) statement. The database search will then start at the i4expr entity instead of the first entity.

Last

Verifies the last entity in the database. 'Mis keyword allows the program to verify the last entity inserted into the database without searching the database from the beginning.

If the type of entity specified by the enttype keyword does not match the type found using the entloc keyword, the DBStatus variable is set to three. When the end of the database is reached, DBStatus is set to two. See Appendix B, "System Variables," for more information.

Only enttype and entloc keywords can specify which entities to verify. The entdata keywords may only retum data about entities.

entatts:
Optional keywords that allow you to verify the data of an

entity. You can use the following entatts keywords with all

entity types:

Color(ivar)

where ivar returns the color number for the verified entity.

4‑261
Statements and Intrinsics

Statements and Intrinsics

Font(ivar)

where ivar returns the font number for the verified entity.

Group(ivar)

where ivar returns the group number of the verified entity.

Layer(ivar)

where ivar returns the layer for the verified entity.

Vvis(ivar)

where ivar returns the view number that the verified entity is visible in. A value of zero means that the entity is visible in all views.

entdata:
Optional keywords that provide the data to be verified for a

specified enttype. Note that only line, string, arc, text, and

point entity types are supported. lf the enttype keyword does

not match the entity found by the entloc keyword, the value

of the variables given in these entdata keywords will not

change. The keywords for each enttype are:

For Lines:

Ends(cvarl, cvar2)

Returns the endpoint coordinates after the keyword Ends.

The cvar1 variable returns end one and cvar2 returns end

two of the line. Both variables return model space

coordinates.

For Strings:

Verts(ivar1, carray(iexpr1))

The coordinates for the vertices

of a string will be returned in an array after the keyword

Verts. Replace carray with the name of a coordinate array

which returns the model space coordinates for the string

vertices. The ivar variable retums the number of vertices in

carray, and iexpr1 with the first element to put vertices into.

For Arcs:

Org(cvar)

Replace cvar with a coordinate variable which will return the

model space origin of the arc.

Radius(rvar)

Replace rvar with a real variable which will return the radius

of the arc. Arcs are drawn counterclockwise.

4‑262
UPL Revision 6.0

Statements and Intrinsics
AB(rvar)

Replace rvar with a real variable which will return the beginning angle of the arc in degrees.

AE(rvar)

Replace rvar with a real variable which will return the ending angle of the arc in degrees.

For Text:

Ang(rvar)

Replace rvar with a real variable which will return the angle the text was inserted at.

Hgt(rvar)

Replace rvar with a real variable which will return the text character height.

Just(ivar)

Replace ivar with an integer variable which will return the textjustification code: 1 ‑ left j ustification 2 ‑ rightjustification 3 ‑ center j ustification

Lnsp(rvar)

Replace rvar with a real variable which will return the text line spacing factor.

Org(cvar)

Replace cvar with a coordinate variable which will return the text origin in model space.

Txt(svar)

Replace svar with a string variable that returns the actual text. Be sure to declare svar to be large enough to hold the data to be returned.

Wdt(rvar)

Replace rvar with a real variable which will return the text character width.

For Points:

Loc(cvar)

Replace cvar with a coordinate variable which will return the model space coordinate of the point.

4‑263
Statements and Intrinsics

Statements and Intrinsics
Examples
VERIFY ARC ENT ID(WHICHENT) ORG(ORIG) RADIUS(RAD)

PROC MAIN

INTEGER MIB, icolor

MIB = 1

VERIFY FIRST

LOOP

MIB = MIB + 1

VERIFY LINE NEXT COLOR(icolor)

IF (DBStatus = 0) AND (icolor <> 12)

MODIFY LINE ENTID(MIB) COLOR(12)

ELSE IF (DBStatus = 2) THEN

EXIT 2

END IF

END LOOP

END PROC

4‑264
UPL Revision 6.0

Statements and Intrinsics

VLen

Type
Intrinsie Function
Geometric

Purpose
Returns a real value equal to the distance between two points in three‑dimensional space.

Syntax
VLen(cexpr1, cexpr2)

Parameters
cexpr1:
Coordinate expression (input)

This parameter specifies the first point.

cexpr2:
Coordinate expression (input)

This parameter specifies the second point.

4‑265
Statements and Intrinsics

Statements and Intrinsics
Vunit

Type
Intrinsic Function
Geometrie

Purpose
Returns the unit vector as a coordinate expression. The vector is one unit long, starting at the origin, parallel to the vector cexpr.

Syntax
VUnit(cexpr)

Parameters
cexpr:
Coordinate expression (input)

This parameter specifies the coordinate expression whose

unit vector will be returned.

NOTE: A coordinate value representing a veetor is obtained by subtracting the coordinate of the starting point of a vector from its ending point. For example, if a vector is directed from coordinate Cl to coordinate C2, it can be represented by the coordinate C2 ‑ C 1.

4‑266
UPL Revision 6.0

Statements and Intrinsics
Window

Type

Statement
Input/Output

Purpose
Defines the dimensions of the UPL windows on your screen. lt is easier to use the Window statement but it allows less control than the intrinsic procedure DerineAW. See DerineAW and Chapter 3, "Functional Listing", for more information.

Syntax
Window iwin, itop, ibot, ileft, iright

Keyword modifiers
iwin:
Replace with the window number you want to define.

itop, ibot, ileft, and iright:

Allow you to change the top, bottom, left and right dimensions of the window. The ileft and iright expressions are optional. You must use commas to separate each expression.

The top line of the screen is line one and the bottom line is determined by the graphics device used on the user's system. The intrinsic procedure Pagelnfo will return this value. lt usually is between 25 and 42.

For an alphanumeric window, if ileft and iright are not given, the window will fill the width of the screen and the graphics window will fill the largest remaining rectangular region. lf ileft and iright are given and are non‑zero, then the graphics window is not changed.

UPL has 10 rectangular windows and a graphics window that allow you to input and output data. Other windows are reserved for data output by Personal Designer. The following list describes each window and its function:

4‑267
Statements and Intrinsics

Statements and Intrinsics

1
General purpose alphanumeric window and Personal

Designer command window

2 to 10
General purpose alphanumeric windows

11
Graphics window

The initial setting for all alphanumeric windows when a UPL program is started is a window the current size of the Personal Designer command window, which is window one. The graphics window will occupy the area left by the command window and the on‑screen icon menu.

Windows 1 through 10 are used by the Accept, Display, Print, and Send statements. When you use one of these statements, your input data is placed in a window determined by the corresponding system variable. The system variables are AccptWin, DisplayWin, PrintWin, and SendWin. For more information, see Appendix B, "System Variables."

Each window has a cursor which starts in the upper left‑hand corner of the window. When you use the Accept, Display, Print, and Send statements, the cursor will move to the position immediately following the last output character. UPL remembers the last eursor position for each window. When the cursor reaches the bottom of a window, it automatically scrolls to the window. To move the cursor to a specific location, see PutCur.

You can overlap as many windows as you like. The window with the highest priority overlaps the others. For windows 1 through 10, the window most recently used by the the Accept, Display, Print, or Send statement assumes the highest priority. For the rest of the windows you must specify the priority using the DefineAW intrinsic procedure. See DefineAW and Chapter 3, "Functional Listing", for more information.

Examples
WINDOW 2,1,5,50,80

WINDOW IWIN,ITOP,ITOP+4

WINDOW
 3,10,10,30,30 ‑‑ a very small window1

‑‑ graphics window at top of screen

WINDOW 11,0,24,1,80

4‑268
UPL Revision 6.0

Statements and Intrinsics
Write

Type
Statement
Input/Output

Purpose
Transfers data from an expression to a file. The file must be opened with the Open statement.

Each Write operation is done in 3 steps:

1. Data in an expression is evaluated.

2. Data is then placed in the file starting at the file pointer

3. The file pointer is advanced to the point just after that data.

These steps are performed differently depending on the type of file, the data type of the expressions, and the way the statement's syntax is used.

Syntax
Write flvar, expr: iexprl: iexpr2....,

Keyword modifiers

flvar:
File variable that must have been opened using the Open statement. The file may have been opened as a text or binary file, and may use sequential or random access. See the Open statement for more information.

expr:
Optional expression of any data type except file, that can be used with flvar. The expr expressions must be separated by commas.

If the file is a text file, the Write statement first evaluates the expression and then converts the values from expr's data type to the equivalent character string value. lt then stores the string value in the file. Characters are written to the file starting at the file pointer. The file pointer then advances to point to the position immediately following the last character

4‑269
Statements and Intrinsics

Statements and Intrinsics
written. This process repeats for the expressions in the statement. After all expressions in the statement have been written, an end‑of‑line sequence is written to the file. This starts a new line in the file. The file pointer is advanced to the beginning of the new line.

Iexpr1:
Optional expression that can be used with expr to specify

how many characters to write. This allows you to set up a

format in your text file. For example, you could write a file

of numbers arranged in columns.

Replace iexprl with a field width. This is an integer

expression for the number of charaeters to use when

outputting the value. lf iexprl is positive, the field is right

justified. lf iexpr1 is negative, the field is leftjustified. The

unused portion of a field is written as blanks (ASCII 32). lf

iexpr1 is specified but the value cannot be written in a field

of iexpr1 characters, the value is truncated on the right. A

colon must precede iexpr1.

iexpr2:
Optional field width for decimal places to be used with

iexpr1. This may be used for real and coordinate values only.

lt specifies the number of characters in the iexpr1 field

which will be used for the decimal places. The "." counts for

one place. A number of greater preeision is rounded up to fit

in this field and, a number of less precision is padded with

zeros. If iexpr2 is negative, exponential notation will be

used. A colon must precede iexpr2.

Optional punctuation. If you do not want to leave an

end‑of‑line sequence after writing data, put a comma at the

end of the Write statement. lt will leave the file pointer just

after the last written character. Any subsequent Write

statement ending without a comma leaves an end‑of‑line

sequence after writing its expressions. In partieular, a

statement of the form "WRITE flvar" writes a blank line.

That is, it writes an end‑of‑line sequence and moves the file

pointer to the beginning of the new line.

4‑270
UPL Revision 6.0

Statements and Intrinsics
If the file is a binary file, the Write statement simply transfers data using the internal data storage format for binary data. See Appendix E, "Internal Data Format," for more information. No data type conversion is done. Each expression's value is transferred to the file starting at the file pointer and continuing in the following bytes. The number of bytes written depends on the expression's data type. The file pointer then advances to the byte immediately following the last byte written. No end‑of‑line sequence is written to a binary file.

The field widths iexpr1, iexpr2, and the comma at the end of the Write statement have no significance with binary files, except when writing a string expression. In this case iexprl specifies how many characters to write. lf iexprl is not given, the current length of the string expression is written.

lf writing to a sequential access file, the current file pointer position determines the end of the file when you close it. If you are writing to the middle of an existing file, move the file pointer to the end of the file before closing it to avoid truncating the file. To move the pointer to the end of the file, simply keep reading data until the file.EOF attribute is TRUE. Then close the file.

If Random File Access is used, the file pointer may also be repositioned using the flvar.POSITION or flvar.POS4 attribute. See the Open statement and WriteCArray, WriteIArray, WriteRArray intrinsics for more information.

4‑271
Statements and Intrinsics

Statements and Intrinsics
Example
‑‑

proc main

integer i = 5, j = 321

integer ifld = 6, k = ‑2212

real a = 23.3256

:

open f1, "data"

:

write f1, i, j*3, a:10:3, i:fld,
' ':5,'A

string ':‑12, k:(ifld*2)

:

write f1, i:8, j:8,

:

write f1, 'Another string':20

:

write f1

end proc

‑‑

This program would write a file which looks like the following three lines

(note: x represents a blank; <cr><lf> is an end‑of‑line sequence):

5963xxxx23.326xxxxx5xxxxxA

stringxxxxxxxxxxx‑2212<cr><lf> xxxxxxx5xxxxx321xxxxxxAnother string<cr><lf>

<cr><lf>

4‑272
UPL Revision 6.0

Statements and Intrinsics
WriteCArray,WritelArray, WriteRArray

Type
Intrinsic Procedure
Input/Output (File)

Purpose
Allows fast storage of integer, real or coordinate data to a binary file. lt is useful for programs which need more than 32,767 bytes of data, the maximum amount which can be declared in a UPL program. This routine can be used to write large amounts of data to a file from a buffer array. The program can then read the data back from the file using the ReadCArray, ReadArray, and ReadRArray intrinsic procedures.

Syntax
WriteCArray(file, array(1))

WritelArray(file, array(1))

WriteRArray(file, array(1))

Parameters
file:
File variable (input/output)

This parameter specifies the file variable for the data file.

See the Open statement for more information on file IO. The

file must be opened as a binary file. Sequential or random

file access may be used.

array:
Coordinate, integer, or real array of any length (input/output)

This parameter specifies the array from which you write the

data into the file. It should be declared to be large enough to

hold all the data to write in one call to WriteCArray,

WritelArray, and WriteRArray.

The routine takes all the data in the array and writes it to the file starting at the file pointer. The file pointer is then placed immediately after the last byte written. The amount of data written is determined by the number of elements declared in the array. Specifically, each call to WriteCArray,

4‑273
Statements and Intrinsics

Statements and Intrinsics
WritelArray, and WriteRArray writes a number of bytes equal to the number of elements in the array muttiplied by the number of bytes per element. The array must always be passed with a subscript of 1:

array (1).

If you are using random file access, the file pointer may be changed to point to any byte in the file. This is done by setting the file.POSITION or file.POS4 attribute.

Setting the file. POSITION attribute moves the file pointer to the position equal to the value of file.POSITION multiplied by the value of file.RECLEN. That is, the file.POSITION attribute teils the program what file record to point to. The file.RECLEN attribute says how many bytes are in the record.

lf your program is writing a file whose arrays are all of the same size and data type, simply declare your record length to be the size of that array in bytes. Repositioning the file pointer is then simply a matter of setting file.POSITION to the array you want.

Setting the file.POS4 attribute moves the file pointer to the given byte offset into the file. (It is not affected by file.RECLEN or file.POSITION).

lf you are mixing arrays of different data types in the same file, you may find it easier to set the record length to 1 (using the Reclen keyword in the Open statement) and use the file.POS4 to set the file pointer as a byte offset into the file.

When calculating file.POS4, take into account the difference in array element sizes. That is, a real element takes up as much as two integer elements and, a coordinate element takes up six times as much as an integer element.

Since the file.POSITION attribute is itself an integer value, it can only be set as high as 32,767. Files are therefore limited to 32,767 * file.RECLEN bytes. lf you want to make a larger file, use the file.POS4 attribute which will allow a byte offset of up to 2,1147,483,647.

4‑274
UPL Revision 6.0

Statements and Intrinsics

Examples
‑‑

-- WRArray.upl

-- This program demonstrates use of WriteRArray.

-- The use of WriteIArray and WriteCArray are

-- very similar.

-- See ReadCArray, ReadIArray, ReadRArray for

-- the program RRArray.upl that will read the

-- file created here. ‑‑

Proc Main

integer I, J, K

integer SavePos

real RealBuffer(100)

file DataFile

-- Open the data file with the length of the

-- data record: 400 = (4 bytes per real) * 100)

open DataFile, 'File.Dat' binary reclen(400)

-- Initialize buffer with random values

-- (for purposes of this demonstration).

loop I=1 to RealBuffer(1).SIZE

RealBuffer(I) = Rnd()

end loop

‑‑ Write data out to a file.

loop J = 1 to 30

-- Note: the loop below and the call to

-- WriteArray below it write the same

-- data to the same place in the file,

-- however, the call to WriteRArray is

-- MUCH faster!!

RealBuffer(1) = Real(J) ‑‑ some calculation

SavePos
DataFile.POSITION ‑‑ save record #

loop K
1 to RealBuffer(1).SIZE

write DataFile, RealBuffer(K)

end loop

DataFile.POSITION = SavePos ‑‑ restore rec. #

WriteRArray(DataFile, RealBuffer(1))

end loop

end proc

‑‑‑

4‑275
Statements and Intrinsics

Statements and Intrinsics
‑‑

-- WXArray.upl

-- This program demonstrates use of WriteCArray,

-- WriteIArray, WriteRArray. It creates a file

-- with blocks of 1000 integers, 500 reals and

-- 200 coord data in the same file.

-- A 12 byte header points to the beginning of

-- each section.

-- The program uses the POS4 attribute for

-- positioning the file pointer.

-- See ReadCArray, ReadIArray, ReadRArray for

-- the program RXArray.upl which reads this data

-- file.

‑‑‑

proc main

integer IntegerSize = 2

integer RealSize = 4

integer CoordSize = 12

integer HeaderSize = 12

‑‑ Header information

integer4 StartIntegerData

integer4 StartRealData

integer4 StartCoordData

‑‑ Data buffers

integer IntegerBuffer(100)

real RealBuffer(50)

coord CoordBuffer(20)

integer4 Dataoffset

integer I, BufferCnt = 10

file DataFile

‑‑ start of code –

open DataFile 'Data.fil' binary reclen(1)

‑‑ Write data to the file.

‑‑ First write placeholders for header values to

‑‑ be filled in later.

‑‑ Next write the data out. (In this example all

‑‑ the data will be zero values.)

‑‑ Keep track of where each block of data starts.

4‑276
UPL Revision 6.0

Statements and Intrinsics

write DataFile, StartIntegerData, StartRealData, \

StartCoordData

StartIntegerData = DataFile.POS4

loop I=1 to BufferCnt

WriteIArray(DataFile, IntegerBuffer(1))

end loop

StartRealData = DataFile.POS4

loop I=1 to BufferCnt

WriteRArray(DataFile, RealBuffer(1))

end loop

StartCoordData = DataFile.POS4

loop I=1 to BufferCnt

WriteCArray(DataFile, CoordBuffer(1))

end loop

-- Write out updated values for header. Must

-- reset file pointer to beginning of file.

DataFile.POS4 = 0

write DataFile, StartIntegerData, StartRealData, \

StartCoordData

‑‑ Initialization completed.

‑‑ Now write out some values.

-- Write out a buffer full random integer values

-- starting after integer value 47.

loop I = 1 to IntegerBuffer(1).SIZE

IntegerBuffer(I) = integer(Rnd()*10.0)

end loop

DataOffset = 47 * integer4(IntegerSize)

DataFile.POS4 = StartIntegerData + DataOffset

WriteIArray(DataFile, IntegerBuffer(1))

-- Write out a buffer full random real values

-- starting after real value 150.

loop I = 1 to RealBuffer(1).SIZE

RealBuffer(I) =
Rnd()

end loop

DataOffset = 150 * integer4(RealSize)

DataPile.POS4 = StartRealData + DataOffset

WriteRArray(DataFile, RealBuffer(1))

-- Write out a buffer full random coord values

-- starting after coord value 10.

4‑277
Statements and Intrinsics

Statements and Intrinsics
loop I = 1 to CoordBuffer(1).SIZE

CoordBuffer(I).X = (Rnd() * 10.0) * real(I)

CoordBuffer(I).Y = (Rnd() * 10.0) * real(I)

CoordBuffer(I).Z = (Rnd() * 10.0) * real(I)

end loop

DataOffset = 10 * integer4(CoordSize)

DataFile.POS4 = StartCoordData + DataOffset

WriteCArray(DataFile, CoordBuffer(1))

close DataFile

end proc

4‑278
UPL Revision 6.0

