

Personal Designer

User Programming Language
(UPL)

Revision 6.0

User Reference Guide

Chapter 2

Programm Structure

Program Structure

Syntax and General Rules ... 2-3

 Explanation of UPL Program Structure ... 2-4

 General Program Structure ... 2-9

 Variables, Constants, and Expressions ... 2-10

 Variables .. 2-10

 Names .. 2-10

 Data Types ... 2-10

 Aggregate Types .. 2-11

 Storage/Access Types ... 2-11

 Variable Attributes .. 2-11

 System Variables ... 2-15

 Constants ... 2-15

 Literal constants ... 2-15

 Named constants ... 2-16

 Declaring Variables and Constants .. 2-17

 Expressions ... 2-19

 Operator Precedence ... 2-20

 Arithmetic Expression .. 2-20

 String Expressions ... 2-21

 Relational Expressions .. 2-22

 Boolean Expressions ... 2-23

 Statements ... 2-25

 Procedures and Functions ... 2-27

 Procedures ... 2-27

 Functions ... 2-27

 Intrinsic Procedures and Functions .. 2-28

 Intrinsic Classes ... 2-28

2-1

Program Structure

 User-Defined Procedures and Functions ...2-29

 Defining User-Defined Procedures ..2-29
 Defining User-Defined Functions ...2-30

 Parameters ..2-30

 Passing Parameters ..2-30

Defining Parameters to User-Defined Procedures and Functions 2-32
 Passing Strings as Parameters ..2-34
 Passing Arrays as Parameters ...2-35

2-2

Program Structure

Syntax and General Rules

Like most programming languages, UPL has a number of reserved words that
the compiler recognizes. These have a fixed meaning and cannot be used
within a program for any other purpose. Keywords are the words that usually
start a UPL statement. Reserved words include keywords, system variables,
and intrinsic procedures and functions names. For example, in the statement,

PRINT 'What is your Name?'

PRINT is a keyword that tells UPL to display output to the screen.

A character string can contain a keyword. For example, in the statement,

PRINT 'Do You Know How To Print Your Name'

The first PRINT is a keyword that tells UPL to print output to the screen. The
second print is simply one word in a character string. Since it is enclosed in
quotation marks, it does not act as a keyword and has no special significance.

Keywords can be in any combination of upper- and lowercase. See Appendix A
for a list of all UPL reserved words.

Variable, procedure, function, and label names must start with a letter and can
be any length, but only the first 16 characters are significant. Upperand
lowercase letters and digits can be used in names. The case of letters does not
make a name unique (see example below). The underscore character is
ignored in variable names and keywords and can therefore be used to make
them more readable. The following names are equivalent:

ALONGNAME
A_LONG_NAME
ALongName

Although a statement is generally contained on one line, it can be continued to
the next line by placing a backslash (\) at the end of the line. Two or more
statements may be placed on one line by separating them with a semicolon (;).

Comments may be started anywhere on a line, except in a string constant, with
a double dash (--). The end of the physical line terminates the comment.
Therefore comments that spill over to additional lines must start with a double
dash at the beginning of each line. A semicolon does not terminate a comment.

2-3 Program Structure

Program Structure

You can make programs more readable by including blank lines because
UPL ignores them. You can also indent lines, as in the sample program
below, to make your program more readable.

Explanation of UPL Program Structure

This chapter describes the structure of UPL, using three sample programs.
Below is one of the simplest UPL programs.

Proc Main

Print 'HELLO'
End Proc

This UPL program will print the word HELLO on your screen. All UPL
programs must contain the PROC MAIN and END PROC statements.
PROC MAIN is the starting point for all UPL programs. In this program
UPL first goes to the PROC MAIN section, executes the statements, reads
END PROC, and stops.

The following program, Rectangl, creates a rectangle.

2-4 UPL Revision 6.0

Program Structure

-- Rectang1.upl

Proc Main

--These next three lines are data declarations.
--They declare the variable names that will be
--used in this program.

string ans:1
Integer Cnt, NumDigs
Coord Points (2), Corners(5)

--These next two lines send output to the screen.

Print "Insert Rectangle: a UPL program."
Print "Digitize the opposite corners:",

--The line below is an intrinsic procedure that
--accepts input in the form of digitizes.

GetDig(2,1,NumDigs,Points(1))

--The next five lines are assignment statements
--that assign a value to a variable. The corners
--of the rectangle are defined in these lines.

Corners(1) = Coord(Points(1).X, Points(1).Y, 0.0)
Corners(2) = Coord(Points(1).X, Points(2).Y, 0.0)
Corners(3) = Coord(Points(2).X, Points(2).Y, 0.0)
Corners(4) = Coord(Points(2).X, Points(1).Y, 0.0)
Corners(5) = Corners(1)

--The following lines perform Personal Designer
--commands from the UPL program. This part of the
--program connects the corners of the rectangle
--with lines and then repaints the screen.

Echo Off All
Send
Send "INSERT STRING:",
Loop Cnt = I to 5
 Send DigStr(Corners(Cnt)),
End Loop
Send "REPA" -- may need an extra send here
Echo On
End Proc

2-5 Program Structure

Program Structure

The next example is a more comprehensive UPL program. While the
PRINT HELLO and Rectangle.upl programs contain only one of the UPL
program sections, the Centigrade program contains all three of the UPL
program sections. These are:

1. The GROUP section

2. The procedure (PROC) and function (FUNC) declaration section

3. The PROC MAIN section

NOTE: In this manual PROC MAIN is referred to as a separate section.
It is a procedure declaration, but since it performs a special task in UPL
and is different from all other procedure declarations, it is discussed
separately.

The sample program ChgTemp locates text strings that contain
temperature notations and changes these notations from Fahrenheit to
Centigrade. This program is presented here to give you an idea of the
scope of a typical UPL program. Do not be concerned if you cannot
decipher each line at this time. This program will become clearer later in
the manual. Refer back to these programs as you continue through this
chapter.

2-6 UPL Revision 6.0

Program Structure

-- ChgTemp.upl
-- This program will change all occurrences of
-- a Fahrenheit temperature within a text entity
-- to its equivalent Centigrade notation.

-- The first section in this program is the
-- "Group" section. It holds the declarations of
-- data to be shared between the procedures and
-- functions of the program. (It is here for
-- illustrative purposes only in this example.
-- None of these variables in this program.)

Group
 Integer this_var, that_var
 Real another_var
 String yet_another:20
 Coord point_var
End Group

-- The next section, "Proc ScanDegrees", is a
-- user-defined procedure. It is like a program
-- within a program. It will be called by the
-- Proc Main (below) to perform a specific task.
-- It has its own local data, but can share data
-- with other procedures and functions in the
-- program.

Proc ScanDegrees(IN String Method:1,ScanStr:256; \
 INOUT String Degrees; \

Integer Offset)

Integer StartIdx, EndIdx, Cnt
String TestChar:1

EndIdx = index(ScanStr, Offset, '~' + Method)
If EndIdx=0 Then
 Offset=0
 Return
Else
 Loop StartIdx = EndIdx-1 to 1 by -1
 TestChar = extract(ScanStr,StartIdx,1)
 Exit When \
 ((TestChar<'O')OR(TestChar>191))
 AND((TestChar<>'.')OR(TestChar<>'-'))
 End Loop

2-7 Program Structure

Program Structure

 Offset = StartIdx + 1
 Cnt = EndIdx - Offset
 Degrees = extract(ScanStr,Offset,Cnt)
 Return
 EndIf
End Proc

-- The next section, "Func Centigrade", is a
-- user-defined function. It is similar to a
-- procedure except that it may be called from with in
-- an expression. Functions return a value through
-- the "Return" statement.

Func Centigrade(IN Integer DegreesFaren) \
 Return Real
 Return((5.0/9.0) * (Real(DegreesFaren) - 32.0))
End Func

-- The last section is the "Proc Main". It
-- directs program execution. Every UPL program
-- must have a Proc Main. All other sections are
-- optional and allow you to break a large
-- program up into manageable parts.

Proc Main
 Integer4 Num, Miblist(100)
 Integer Iend, StrIndx, EntCnt
 String OpRangeStr:256
 String TempStr1:256, TempStr2:256
 String NewDeg:12, FarenDeg:10
 Boolean Done = False

BreakChar=3
Print 'Digitize text string(s):',
Getent(100,Num,Miblist(1),Iend)
Loop EntCnt = 1 to Integer(Num)
 Verify Text EntId(Miblist(EntCnt)) \
 TXT(OpRangeStr)
 Loop

ScanDegrees('F',OpRangeStr,FarenDeg, \
StrIndx)

Exit When StrIndx = 0
NewDeg = String((Centigrade(Integer(\

FarenDeg))):5:1) + '~C'
TempStr1 = extract(OpRangeStr,1, \
 StrIndx-1)
TempStr2 = extract(OpRangeStr,StrIndx \

+FarenDeg.Length+2,256)

2-8 UPL Revision 6.0

Program Structure

OpRangeStr = TempStr1+NewDeg+TempStr2
StrIndx: = StrIndx+FarenDeg.Length+2

End Loop
Modify Text EntId(Miblist(EntCnt)) \

TXT(OpRangeStr) RPNT(True)
 End Loop
End Proc
--- -

General Program Structure

A UPL program may start with the global data definition section or Group
section. Here you define variables and constants that will be referenced by
all procedures and functions in the program. Data defined in the Group
section can also be shared with other programs by using the Process
statement. See Chapter 4 for a full description of the Process statement. If
your program consists of only Proc Main, omit the Group section and
declare the variables within Proc Main. The global data definition section
begins with the statement Group and ends with the statement End Group.

The next section of the sample program consists of procedure and function
declarations. If a program consists of only one procedure, that procedure
must be named Proc Main. If a program consists of several procedures, the
last one must be called Proc Main. Think of procedures and functions as
programs within your program. These 'sub-programs' perform specific tasks.
Procedures and functions can contain sequences of code that would
otherwise be repeated many times. Data used in these procedures and
functions can be shared in the Group section or by passing parameters.
Procedures and functions begin with the reserved word Proc or Func
followed by the procedure or function name and end with the statement End
Proc or End Func. Procedures and functions can contain variable
declarations, statements, procedure calls, and function calls.

The final section, Proc Main, is a special procedure. It is the first procedure
executed when you run the program. Often. a program consists of only the
Proc Main. In more complicated programs the Proc Main directs the flow of
the program by calling other procedures and functions. Proc Main is
terminated with the statement End Proc.

2-9 Program Structure

Program Structure

Variables, Constants, and Expressions

Variables

Variables represent values in a UPL program. When you assign a value to
the variable, this value is stored in a reserved location. You can set a
variable's value to be the result of calculations or statements in the
program. If the variable changes value during the program, UPL replaces it
with the new value.

Before using a variable in a program, you must declare it's characteristics.
Variables have names, data types, aggregate types, storage types, and
attributes. Variable declarations are discussed below.

Names

The names you supply for variables must start with a letter. You can use
upper- and lowercase letters and numerals. UPL ignores underscore
characters in variable names, so you can use these to make the names
more readable.

Variable names are recognized by the first 16 characters only. Any
characters appearing after the 16th do not make the name unique. For
example, the variable names CENTIMETERLENGTH I and
CENTIMETERLENGTH2 describe the same variable.

Single letters and abbreviations are often used as variable names. Use
meaningful words or abbreviations as variable names, to make it easier to
remember what the variables represent.

Data Types

In UPL, there are several kinds of data you can work with. These data
types are described below.

Integer represents whole numbers (without a decimal point) in the range
-32,768 to 32,767.

Integer4 represents a larger range of whole numbers, from approximately
-2 billion to +2 billion (or -2,147,483,648 to +2,147,483,647). Integer4 is
often called long integer or 32-bit integer. Use Integer4 rather than integer
for entity counts and MIB identifiers, since these have a range which
exceeds the maximum value that can be represented by integer variables.

2-10 UPL Revision 6.0

Program Structure

Real refers to positive or negative numbers that contain a decimal point
and start with a digit. Any integer can be written as a real number by
adding a decimal point followed by a zero. For example, 10 is an integer
but 10.0 is a real number. Real values represent numbers over the range
of plus or minus 38 orders of magnitude with 7 places of precision.

Booleans store the result of comparisons or logical tests. There are two
values that a Boolean variable can store: True and False.

Coordinates represent a location in 3D space. It is actually three values
treated as cartesian coordinate.

Strings consist of a series of characters.

Aggregate Types

Aggregate type refers to how the data in variables is grouped as a unit.
UPL has three aggregate types.

Scalar variables are single elements.

Arrays contain a series of elements that let you store items of the same
data type in an organized, accessible way. In UPL, multi -dimensional
arrays can contain up to five dimensions. The first subscript changes the
fastest as elements are allocated in memory. This is sometimes referred to
as column major form.

Files can contain data of all data types. These files can be stored separate
your program,say, on a disk. A file variable represents the file in the
program.

Storage l Access Types

There are two ways to store variables: locally and globally. A global
variable is declared in the GROUP section of a program. This means that
it can be shared by other sections of the program. A local variable can only
be used in the procedure or function it is declared in.

Variable Attributes

Variable attributes describe characteristics of variables apart from their
cur-rent value. To access attribute information, place a period after the
variable name, followed by the name of the attribute. Variable attributes for
coordinate, string, file, and array variables are discussed below.

2-11 Program Structure

Program Structure

The following table lists variable attributes for coordinate variables.

Attribute Data type Can be set? Description

X real Yes The X value
Y real Yes The Y value
z real Yes The Z value

Table 2-1. Coordinate variable attributes.

The following table lists attributes for string variables.

Attribute Data type Can be set? Description

LEN integer No The maximum number of
 characters the STRING can have.
LENGTH integer Yes Current number of characters in
 STRING variables.

Table 2-2. String variable attributes.

The following table lists variable attributes for variables with file
aggregate type. A READ operation may be either the Read statement
(for text and binary files) or the ReadCArray, ReadlArray, ReadRArray
intrinsics (binary files only). An end-of-file marker is defined as ASCII 26
in DOS and ASCII 04 in UNIX. The end-of-line marker is defined as
ASCII 13 followed by ASCII 10 in DOS. It is an ASCII 10 in Unix.

2-12 UPL Revision 6.0

Program Structure

Attribute Data type Can be set? Description

EOF Boolean No Set TRUE when any READ
 operation (text or binary, random
 or sequential) reads past the
 physical end of file. Also set
 TRUE when a sequential access
 Read statement on a text file
 encounters an end-of-file marker.
 Otherwise it is false0therwise it
 is false.
EOLN Boolean No Set TRUE when any
 sequential access Read statement
 on a text file encounters an
 end-of-line marker, an
 end-of-file marker or the physical
 end of file. It is reset to FALSE
 after reading the last item in a
 Read statement that does not end
 in a comma. Binary files do not
 use the EOLN attribute.
OPEN boolean No Set TRUE by the Open
 statement and reset to false by the
 Close statement.

2-13 Program Structure

Program Structure

POSITION integer Yes Used to set or determine the
 current position in a random
 access file. It holds the the
 current record. number The
 first record in a file is record one.
 The position of a random access
 file depends upon this number
 and the record length attribute.
 Record numbers can be set in the
 range I to 32,767 using
 POSITION. For sequential files,
 the position attribute always has a
 value of one and has no effect
 when set.

POS4 integer4 Yes Used to set or determine the
 current position in a random
 access file. It holds the
 position of the file pointer
 as a byte offset from the
 beginning of the file
 The byte offset ranges
 from 0 to 2,147,483,646.
RECLEN integer No Contains the file's record
 length as set by the Open

statement.. If the file was not
opened with RECLEN, then a
value of zero is returned.

Table 2-3. File variable attributes.

2-14 UPL Revision 6.0

Program Structure

The following table lists variable attributes for array variables.

Attribute Data type Can be set? Description

SIZE integer No Gives the number of elements
 in an array.

Table 2-4. Array variable attributes.

System Variables

Some system variables are predeclared and accessible to every UPL
program. These variables either return information about or change the
current status of the system. Other system variables are accessible
through the intrinsic procedures SysVarl, SysVarR, and SysVarS.

There are three categories of predeclared system variables: file status
information, window information, and character information.

File status system variables hold information about data base and file
access status. These cannot be set.

Window information system variables poll and change the alpha-
numeric windows used by the system's commands. These can be set.

Character information system variables hold data about characters sent
between Personal Designer and the UPL program.

The predeclared system variables are discussed in detail in Appendix B,.
Other system variables are discussed in Chapter 4 under the intrinsic
procedures SysVarl, SysVarR, and SysVarS.

Constants

Unlike variables, constants do not change when you run the program.
There are two types of constants: literal and named. Literal constants
consist of numerical, booleans, or string values. You supply these values
when you write the program.

2-15 Program Structure

Program Structure

Literal constants

Literal coordinate constants are enclosed in brackets and define a specific
point in space. If you are working in one or two dimensions, you can omit the
y and z coordinates and the system will automatically supply the value zero.
Examples of literal coordinate constants are:

[6.0,-8,-19.2]
[9.2] is the same as [9.2,0.0,0.0]
[] is the same as [0,0,0]
[3.0,4.6] is the same as [3.0,4.6,0.0]

Literal string constants are enclosed in quotation marks. The quotation
marks tell the program not to process the information contained within. For
example, the UPL statement

PRINT 32+54

produces the screen output 86. The program performs the addition
operation first and prints the result. However, the statement

Print '32+54'

produces the screen output 32+54. The program prints the exact expression
within the quotation marks without processing the information. The quotation
marks act as delimiters and are not part of the string.

String constants can include letters, numerals, and special characters in any
combination. You can use either single or double quotes to enclose the
string. If you want to include a single quote within a string, use double
quotes as delimiters. Examples of string constants are:

'A String Constant'
"The letter 'A' is for able."
"the conversion factor is 2.54"
 ' ' (a null string)

To use control character sequences or a carriage return in a string, enter a
pound sign (#) followed by the ASCII character code that represents the
character followed by another optional pound sign. The second pound sign
should be used if the character immediately following the ASCII character
code is a digit from zero through nine. Some of the most frequently used
ASCII character codes are 13(carriage return), 3(^C), 2(A B), and I O(line
feed). To represent a carriage return in a string, use '# 13'. To use the pound
sign as a character in a string, put in two pound signs. See Appendix F for a
complete listing of the ASCII codes.

2-16 UPL Revision 6.0

Program Structure

Named constants

You can give a constant a name and use this name in the program in
place of the literal value. Named constants make a program easier to
understand and modify. For example, if the maximum value is 500, you
can use MAX_VALUE, as the named constant, to replace each occurrence
of 500. If you want to increase the maximum value to 800, only one line in
your program has to be changed. After you reset MAX-VALUE to 800 and
compile your program, the system updates all occurrences of MAX-VALUE
in the program code.

Declaring Variables and Constants

In UPL, you must declare all variables and constants before they can be
used. You can do this in the GROUP section or within procedures. To
declare a variable, list its data type, aggregate type, and variable name. In
the following examples of variable declarations, RI is declared as a real
variable and B I is declared as a Boolean variable.

REAL R1
BOOLEAN B1
INTEGER I1

Once you declare a variable as belonging to one data type, you cannot
give it a value belonging to another data type. In the above example, you
cannot give B I the value 10 because 10 is an integer.

The exception to this rule is with integer, integer4, and real constants.
You may assign an integer or an integer4 constant to a real variable.
The result is simply an integer constant treated as a real. For example

REAL R1 = 10

results in assigning 10.0 to R1.

You may also assign a real constant to an integer or integer4 variable.
The real constant is rounded and then assigned as an integer value to
the variable. For instance,

INTEGER I1 = 10.6

results in the assignment of 11 to I1.

2-17 Program Structure

Program Structure

To declare more than one variable of the same data type, separate the
variables with commas. The following example declares the variables A,
J, and K as integers.

 INTEGER A, J, K

To give a variable an initial value, follow the variable with an equal sign
and the initial value. The data type of the variable and the initial value
must match. In the examples below, the integer variable J is initialized to
the value 32. The coordinate variable C3 is initialized to the value [-5.5,
-4.0, 9.0] and the real variable R1 is initialized to the real value 10.0.

INTEGER A,J=32,K
COORD C3 = [-5.5, -4.0, 9.0]
REAL R1 = 10.0

When declaring variables as strings, you must give the maximum
number of characters in the string by following the variable with a colon
and an integer constant. The maximum length tells the system how
many bytes of storage to reserve for the string. Here is an example:
STRING NAME:40, DRWNM:8 = ' NEW.DRW '.

This declares the variable NAME as a string with a maximum length of
40 and the variable DRWNM as a string with a maximum length of 8 and
an initial value of NEW.DRW.

To declare an array, you give the array name followed in parentheses by
the array dimensions. You can declare arrays of up to five dimensions.
The following example declares D as a one-dimensional array with 10
elements:

INTEGER D(10)

You cannot initialize an array variable in its declaration.

The following example declares a two-dimensional coordinate array, C1,
with four rows and five columns containing coordinate data:

COORD C1(4,5)

When you declare a named constant, write the keyword CONST first,
followed by the data type, and then the name that you equate to the
value it represents. Once you declare a named constant, you cannot
change its value throughout the program. The following are some
examples of named constant declarations:

CONST INTEGER HIGHEST = 90, AVERAGE = 54
CONST REAL INTEREST_RATE = 0.165

2-18 UPL Revision 60

Program Structure

Expressions

UPL programs contain expressions that evaluate or take action upon data.
There are four kinds of expressions: arithmetic, string, relational, and
Boolean. An expression must have two operands of the same data type
and an operator.

In the expression, 4.0*2.0, 4.0 and 2.0 are operands and * is an operator.
4.0 and 2.0 are both real data types. In order to use two different data
types in an expression, you need to use intrinsic functions to convert the
operands to the same data types.

For example, to add a real number R1 to an integer I2, use the intrinsic
function Real to convert the integer to a real number,

R1 + Real(I2)

See Chapter 4, Statements and Intrinsics, for more information on intrinsic
functions.

The operands in expressions can be any of the following:

Constants Variables variable attributes Function
calls Other expressions

When arithmetic, relational, and Boolean operators appear in the same
expression, the order in which they are evaluated follows the guidelines in
Table 2-5. One has first precedence and eight has last precedence.

Operator Operation Precedence

Identity

+ or - Positive or negative value 1

Arithmetic

** or A Exponentiation 2
/ Division 3
* Multiplication 3
- Subtraction or
 Negation 4

2-19 Program Structure

Program Structure

+ Addition or
 Identity 4

Relational

< Lessthan 5
<= or =< Less than or equal to 5
 Equal to 5
<> Not equal to 5
> Greater than 5
>= or => Greater than or equal to 5

Boolean

NOT Negation 6
AND Conjunction 7
OR Inclusive Disjunction 8

Table 2-5. Relative Precedence of Operator Classes and Expressions.

Operator Precedence

If an expression contains more than one operator from the same level
of precedence, those operations are evaluated from left to right.

Parentheses can be used to change or clarify the order of precedence.
Operations within parentheses are evaluated first. If you use multiple
pairs of parentheses, calculations are performed from the inside out.

The following expressions are identical except for parentheses.
Because of the parentheses they are evaluated differently.

2 + (50 + 10) *6 equals 362
2 + 50 + (10*6) equals 112

Arithmetic Expression

Arithmetic expressions consist of numbers or variables connected with
a mathematical symbol.

Expressions are evaluated according to operator precedence rules.
For example, 45 + 15*2, is evaluated to 75. The program first multiplies
15*2, and then adds 45 since multiplication takes precedence over
addition.

2-20 UPL Revision 6.0

Program Structure

The arithmetic operators and their order of precedence are shown in
Table 2-6.

As the table below indicates, exponentiation has the highest level of
precedence, followed by multiplication and division, and then addition
and subtraction. Exponentiation is always evaluated from right to left.

Operator Operation Precedence

** or ^ Exponentiation Highest
/ Division Intermediate
* Multiplication Intermediate
- Subtraction Lowest
+ Addition Lowest

Table 2-6. Arithmetic Operators and Their Order of Precedence

You can also use the operators, + and -, with a single unary operand
as shown in the following examples. These expressions have only one
operand and indicate a positive or negative value. Unary operators
have the highest possible precedence.

-5
-3.21
+30001

The division of two integers results in the mathematical quotient of the
two values truncated toward zero. Thus, 7/3 evaluates to two, and
(-7)/3 evaluates to negative two. Both 9/10 and 9/(-10) evaluate to
zero.

String Expressions

An expression that evaluates to a string is called a string expression.
String variables and string constants are examples of string
expressions. The intrinsic function String(R), that converts a real
number to a string, is also a string expression. You can form more
complex string expressions by linking two or more string expressions
together with a + sign. The following are examples of string
expressions:

S1
"A STRING"
S1 + 'END'
("BEG" + S1)

2-21 Program Structure

Program Structure

Relational Expressions

Relational expressions compare the values of two arithmetic or string
expressions using a relational operator. When you evaluate a relational
expression, the result will be Boolean: True or False. These operators are
listed in Table 2-7:

Operator Operation

< Lessthan
<= or =< Less than or equal to
= Equal to
<> Not equal to
> Greater than
>= or => Greater than or equal to

Table 2-7. Relational Operators

Relational expressions let you compare integer, real, string, and
coordinate data. (You may compare two coordinates for equality or
inequality only. To get further information, between two coordinates,
compare the x, y, and z attributes of one coordinate with those of the
second coordinate.)

To compare strings, UPL compares the ASCII value of the first character
in the first string with the ASCII value of the first character in the second
string. Characters include letters, numerals, spaces, and special symbols.
If the ASCII values of the two characters are the same, UPL compares the
second character in each string and so on. If the strings are unequal in
length, the shorter one is considered as if it were extended to the length of
the longer one by the addition of spaces. The system continues the
comparison until it finds an inequality in the ASCII codes.

Relational expressions are often used in conditional statements such as If
and Exit When. In many cases relational expressions are combined with
the Boolean operators, NOT, AND, and OR, for example:.

IF X>Y AND Y=2 THEN
 X=2
ENDIF

EXIT WHEN NUM>5 OR NUM<=0

2-22 UPL Revision 6.0

Program Structure

Boolean Expressions

A Boolean expression is any expression that is evaluated to true or false.
Boolean expressions include Boolean constants, Boolean variables,
relational expressions, and intrinsic functions such as Exist(FN) that yield
a value of data type Boolean.

You can use Boolean operators to combine simple Boolean expressions
into more complex Boolean expressions. The Boolean operators are listed
in Table 2-8.

Operator Operation Precedence

NOT Negation Highest
AND Conjunction Intermediate
OR Inclusive
 Disjunction Lowest

Table 2-8. Boolean Operators

The AND and OR operators require two operands. The NOT operator
is placed in front of its single operand and thus is a unary operator.

As with arithmetic expressions, you can use parentheses to change
the order in which operations are performed. If a Boolean expression
contains operations in parentheses, these are evaluated first.

Boolean expressions are most often used within conditional
statements and as flags. In the following examples, the Boolean
expressions are capitalized for clarity.

exit when NOT A OR B AND C
exit when (NOT A) AND (B OR C)
if LENGTH<=0.0 OR WIDTH<=0.0 then exit; endif
exit when A

There is no Boolean operator that tests for equality like there is for
relational expressions. You can assign a true or false value to a
Boolean variable, but you cannot test for an equality in a Boolean
expression by using an equal sign. In the example, EXIT WHEN A,
the implicit meaning is Exit when A is 'equal' to true. In the following
example the first statement is not a legal statement since you cannot
use an equal sign to test for equality in a Boolean expression. The
second statement is a legal UPL statement.

exit when bvar = true --incorrect
exit when bvar --correct

2-23 Program Structure

Program Structure

Statements

This section explains the general capabilities of each type of statement
class in UPL. The individual statements that belong to these classes are
discussed in more detail in Chapter 3, "Functional Listing," and Chapter 4,
"Statements and Intrinsics".

Declaration Statements declare the data, aggregate and storage types of
variables available in each program. For more information refer to the
heading, Declaring Variables and Constants, in this chapter.

Assignment Statements are the most basic statements in UPL. Use these
statements to change the value of a variable, variable attribute, or array
element within a program.

Program Structure Statements define the structure of a program. They are
the Proc, Func, and Group statements. Proc and Func contain the code
portions of the programs and Group contains the variable declarations.
These statements are described in the chapter, "Program Structure."

Flow Control Statements control the flow of the program by testing for
conditions in the code. Flow control statements direct the program's path.

If Then Else Endif

executes a series of statements according to a
Boolean result. If statements can be nested.

Loop EndLoop executes a series of statements repetitively. A loop

can execute a specified number of times, or until a
specific condition or event occurs.

Exit causes control to jump from this statement to the

end of a surrounding Loop or If statement.

GoTo causes control to jump from this statement to a

 specified label in the code.

Return causes control to return from a called procedure or

 function to a calling procedure or function. When
 Return is used with a function it specifies a return
 value.

Process causes control to pass to the beginning of another

UPL program.

Subroutine call executes a procedure or function.

2-24 UPL Revision 6.0

Program Structure

Input l Output Statements control the input and output to and from the
graphics screen, keyboard, digitizer, and DOS or UNIX files. These
statements interface to and from files and windows in UPL.

The Window Input / Output statements are:

Window defines characteristics of a window and assigns it to a

 number.

Accept accepts input from the user and stores it in a variable.

Print sends output to a window.

Display displays blocks of text to a window.

Clear erases the contents of a window.

Send ends commands to the system.

Echo controls echoing of commands sent to the system.

The File Input / Output Statements are:

Open opens a file for input or output. Controls text and

 binary data access to files. Also determines sequential
 or random access.

Read reads data from a file.

Write writes data to a file.

Close closes access to a file.

Database Access Statements manipulate the drawing database. These
statements act upon the entities in the current drawing file. See
Appendix G for more information on these statements. The database
access statements are:

Insert lets entities be inserted directly into the part database.

Verify returns information about entities in the database.

Modify allows modification of existing entities in the

 database.

2-25 Program Structure

Program Structure

Compiler Directive Statements control the actions of the compiler. They
are:

$Include lets the compiler use code from a text file other than

the UPL source code file.

$Codesize tells the system how much external memory to

allocate for UPL code.

Procedures and Functions

UPL supports procedures and functions. Procedures and functions are
sometimes known as sub-routines or sub-programs. You may want to
think of them as programs within your program. They perform some task
or calculation and let you break down your program into small,
manageable pieces.

Procedures

Procedures are invoked by entering their name as a statement in your
program. This is known as calling a procedure.

When the program is run and a procedure call is encountered, the
following happens. First, the flow of control moves to the procedure.
Next, the statements which make up the procedure are executed.
Finally, the flow of control returns to the main line of your program, to the
statement following the procedure call.

Procedures can have many input and output values known as
parameters. Your program specifies these values to the procedure when
it is invoked. The procedure returns values to your program when it has
finished executing. This is known as passing parameters. (see
Parameters, below)

Functions

Functions are invoked by entering their name in an expression which is
part of a statement in your program. This is known as 'calling' a function.

A function operates in a slightly different way from a procedure. A
function call may be encountered anywhere, even in the middle of
executing a statement. The flow of control moves from your program to
the function. The statements which make up the function are executed.

2-26 UPL Revision 6.0

Program Structure

These statements always calculate a value. When the flow of control
returns to your program, the value is also returned. This value takes the
place of the function call in within the original statement. The rest of the
statement is then executed.

Only input parameters can be passed to functions; functions return only
one value. (see Parameters, below.)

Intrinsic Procedures and Functions

Functions and procedures (that is, subroutines) may be one of two kinds:
intrinsics available as part of UPL language and user-defined subroutines
developed by the user.

UPL supplies the intrinsic procedures and functions described in Chapter
4. These procedures and functions are built into the language and do not
need to be defined in program code.

There are intrinsic procedures for a variety of tasks such as inputting
coordinate data, drawing graphics on the screen, and manipulating the
database. Intrinsic functions perform many basic calculations such as
taking the square root of a number, finding the sine of a number, and
converting a real number to its nearest integer equivalent.

UPL:s intrinsics can be grouped into several classes to make them easier
to remember. These classes are listed below. For a complete list of
intrinsic procedures and functions grouped by the tasks they perform see
Chapter 3, Functional Listing.

Intrinsic Classes

UPL has many different intrinsic functions and procedures that make
programming easier. These intrinsics can be grouped into the following
classes.

Graphics Intrinsics let the programmer define the, menus, and text, display
entities, and shade regions.

Input/Output Intrinsics let the programmer define the graphic windows and
perform some file operations.

User Interface Intrinsics let the programmer create a command structure
identical to Personal Designer's.

2-27 Program Structure

Program Structure

Geometric Intrinsics eliminate the need for the user to extract data about
entities and calculate their relationship.

Database Access Intrinsics give programmers direct database access and
the ability to manipulate the drawing entities.

Operating System Intrinsics allow access to operating system functions.

Arithmetic Intrinsics provide basic arithmetic and mathematical
capabilities.

Trigonometric Intrinsics perform trigonometric functions on variables.

Datatype Conversion Intrinsics perform the necessary conversions on the
variables in expressions and statements.

String Handling Intrinsics perform manipulations on string variables.

User-Defined Procedures and Functions

User-defined procedures and functions are sub-programs which you, the
programmer, create. They must be 'defined' before they can be called.
That is, the UPL statements which make up the user-defined procedure or
function must occur in your program before the statement or expression
that calls them. These definitions must occur in the program after the
Group section and before the Proc Main (see General Program Structure,
earlier in this chapter.)

User-defined procedures and functions may, of course, be called from the
Proc Main. They may also be called from within other user-defined
procedures and functions as long as the one being called is defined before
it is called. For example, if procedure A calls procedure or function B, then
B must be defined before A. If A calls B, then B cannot call A.

A user-defined procedure or function can be called from within itself. This
is known as recursion.

User-defined procedures and functions pass parameters in the same
manner as intrinsic procedures and functions. (see Parameters, below)

2-28 UPL Revision 6.0

Program Structure

Defining User-Defined Procedures

The Proc statement must begin a user-defined procedure. It is followed by
the procedure name which will be used to call the procedure. An optional
parameter list follows the procedure name. Following this comes the body
of the procedure. This includes declarations, assignments, flow of control
statements, calls to other procedures and functions, etc. The procedure
must end with the statement End Proc. See the entries for Proc and End
Proc in Chapter 4, "Statements and Intrinsics," for more information.

Defining User-Defined Functions

The Func statement must begin a user-defined function. It is followed by
the function name which will be used to call the function. An optional
,parameter list follows the function name. Next, the keyword Return must
appear followed by the data type of the value to be returned. Next comes
the body of the function. This includes declarations, assignments, flow of
control statements, calls to other procedures and functions, etc. The body
of the function must contain a Return statement. This statement defines
the value returned by the function. The function must end with the
statement End Func. See the entries for Func , End Func , and Return
(for Functions) in Chapter 4, "Statements and Intrinsics", for more
information.

Parameters

In UPL, you can share data in the Group section with all procedures and
functions in your program. Such data is often known as global data. It is
usually more advantageous to declare variables locally in a procedure.
Unless passed to another procedure as a parameter, local data is
accessible only in the procedure in which you declare it. This makes it
easier to maintain and debug a program.

You can then share data exclusively between certain procedures and
functions by passing parameters. The data that you pass can be
variables, constants, or expressions. In large programs, passing
parameters lets you keep track of where data is being changed.

Parameters, when declared, act as place holders. They represent the
data from your program to the called subroutine.

2-29 Program Structure

Program Structure

Passing Parameters

There are two modes for passing parameters, input and inputloutput.
Two important differences exist between input and input/output
parameters. First, if the value of a variable passed as an input parameter
is changed in the called procedure or function, the value of that variable
in the calling procedure does not change. In contrast, when the value of
a variable passed as an input/output parameter changes, the value of
that variable in the calling procedure also changes.

The second difference is that you can pass either expressions or
variables as input parameters, while you can only pass a variable as an
input/output parameter.

Use input parameters unless you are expecting the value to change.
This protects you from inadvertently changing a variable's value in a
procedure and then using that variable when you leave that procedure.
Functions can only have input parameters.

There must be a one to one correspondence between the variables in
the procedure or function call and the parameters in the called procedure
or function definition.

To pass parameters to an intrinsic procedure orfunction, refer to the
appropriate page in Chapter 4 for the particular intrinsic procedure or
function. The mode is listed along with the data and aggregate type of
the parameters, either ' (input) ' or ' (input/output) '. If the parameter is
listed as an expression, you can pass either an expression or a variable.
If the parameter is listed as an array or variable, you must give the array
or scalar variable name.

If the description of the parameter includes the term "specifies", you
must initialize your input value or variable. If the description includes
the term "returns", the value may change during execution of the
intrinsic procedure or function.

The return type of an intrinsic function is given under the Purpose
heading.

Call the intrinsic procedure or function by specifying its name.
Substitute an expression or the name of the variable or constant from
your program into each parameter in the parameter list. The data type
of the parameters and the values or variables you substitute must be
the same. Surround the parameters in parentheses.

2-30 UPL Revision 6.0

Program Structure

To pass parameters to a user-defined procedure orfunction, refertothe
Proc or Func statement in your procedure or function definition. The
mode is listed along with the data and aggregate type of the parameters,
either 'In ' for input or ' InOut ' for input/output. If the parameter's mode is
In, you can pass either an expression or a variable. If the parameter 's
mode is InOut you must give the array or scalar variable name.

Call the user-defined procedure or function by specifying its name.
Substitute an expression or the name of the variable or constant from
your program into each parameter in the parameter list. The data type of
the parameters and the values or variables you substitute must be the
same. Surround the parameters in parentheses.

Defining Parameters to User-Defined Procedures and Functions

The steps below illustrate how to define the parameters to a user-defined
procedure or function. Note that user-defined functions can only have input
parameters, thus their mode must always be input. Function input
parameters cannot be arrays.

1. List the mode of the parameter, either in for (Input) or inout for

(Input/Output).

2. List the data type of the parameter.

3. List the parameter names, separating each with a comma.

4. To change the data type or mode, use a semicolon followed by the

new data type or mode. If you change mode, you must also give the
data type even if it has not changed. If the mode does not change
you need not repeat it.

5. Make sure that the entire parameter list is enclosed in parentheses.

Proc P1 (INOUT Integer I1(3,5), I2; \
 IN Integer I3; Real X; String S1:20;\
 INOUT String S2(10,50))

2-31 Program Structure

Program Structure

This example has 6 parameters:

Parameter I Integer array I1 (3,5) Input/Output
Parameter 2 Integer I2 Input/Output
Parameter 3 Integer I3 Input
Parameter 4 Real X Input
Parameter 5 String S1:20 Input
Parameter 6 String array S2(10,50) Input/Output

In the example above, when you declared Real X an Input variable, you
did not need to repeat the mode keyword In even though the data type
changed.

The program below, CalcLen, illustrates calls to both user-defined and
intrinsic procedures. Following this is an explanation of the parameters
used.

-- CalcLen

Proc FindLength(In Coord End1, End2; \
 Inout Real Length1)
Length1=Sqrt(((End1.X-End2.X)**2.0) \

+ ((End1.Y-End2.Y)**2.0) \
+ ((End1.Z-End2.Z)**2.0))

End Proc

Proc Main
 Integer NumEnds
 coord EndPoints(2)
 Real TheLength

Print "This program determines ",
Print "the length of a line."

Print "digitize the endpoints:"

GetEnd(2,1,NumEnds,EndPoints(1))

FindLength(EndPoints(1),EndPoints(2),TheLength)

Print "The length of the line from ", \
 EndPoints(1), " to ", EndPoints(2), \
 " is ", TheLength
End Proc

2-32 UPL Revision 6.0

Program Structure

Proc FindLength is the called procedure. Proc Main is the calling
procedure. When FindLength is called from Proc Main, the variables
EndPoints(1), EndPoints(2), and TheLength are passed as parameters to
the procedure FindLength.

The first two variables EndPoint 1 and EndPoint2, will not change since
they were passed as input parameters to End 1 and End2. The last
variable, TheLength, will change since it was passed as an input/output
parameter to Length 1.

CalcLen also contains a call to an intrinsic procedure, GetEnd. The data
type and mode of each parameter are pre-defined and listed under this
intrinsic procedure in Chapter 4. The first two expressions, 2 and 1, are
passed as input parameters and thus will not change. The second two
variables, NumEnds and EndPoints(1) are passed as input/output
parameters and thus can have a new value after GetEnd returns.

Passing Strings as Parameters

To pass string variables or expressions, the following rules apply.

1. The length of a string variable, constant, or expression being passed to an

input string parameter should not be larger than the declared maximum
length of the string parameter.

In the following parameter list, the IN string has a maximum length of 20.

P1(IN String S1:20)

If the string variable passed to this parameter is longer, it is truncated to 20.

2. For Input/Output strings, no string length is given in the parameter list of

the called procedure. The maximum string length is determined by the
declared maximum length of the string in the calling procedure.

Below is an example of passing strings as parameters:

-- StrProc1 procedure uses an Input String
-- parameter. It will print out a maximum of
-- 10 characters.

2-33 Program Structure

Program Structure

Proc StrProc1(IN string InpStr1:10)
 print InpStr1
end Proc

-- StrProc2 procedure uses an Input/Output String
-- parameter.

Proc StrProc2(INOUT string InpStr2)
 print InpStr2
end Proc

-- The main procedure will pass the same string
-- to the two parameters.

Proc Main
string TestString:20
 TestString = 'This is a test.'
 StrProc1(TestString)
 StrProc2(TestString)
end Proc

This example would print out:

This is a
This is a test.

Passing Arrays as Parameters

You can only declare arrays as Input/Output parameters; functions cannot
have arrays as parameters. When calling a user-defined procedure, the
array being passed as a parameter should not be larger than the array
declared in the parameter list of the user-defined procedure. When calling
the user-defined procedure, you must pass the entire array. Thus you
must use a subscript of one for all array indices.

To pass just one element of an array to another procedure, the parameter
should be declared as a scalar, not an array.

In intrinsic procedures the size of the array variable to be passed as a
parameter does not matter. With intrinsic procedures you can pass part of
an array. Specify the element before those you want passed and all
elements after this one will be passed.

Array parameters for intrinsic procedures are always listed as
Input/Output.

2-34 UPL Revision 6.0

Program Structure

When using intrinsic procedures look for the description of the parameter
in Chapter 4. Parameters described as specifying something require you
to pass an array with data in it. Parameters described as returning
something will pass back new data in the array.

The program below shows different methods of passing array
parameters.

-- Passing Arrays as Parameters

-- Procedure 'SingleDimArr' may be passed any
-- single dimensioned integer array with less
-- than 100 elements. Although you must pass the
-- first element of the array to (because its a
-- user defined procedure), you may specify an
-- element or subrange of elements with which
-- to work.

Proc SingleDimArr(INOUT integer Arr(100); \
IN Integer StartElement, \
NumElements)

integer i
print 'Single Dim Array = '
loop i = StartElement to \

 StartElement+(NumElements-1)
 print Arr(i),'
 end loop print
end proc

-- Procedure 'MultiDimArr' should only be passed
-- an array with dimensions of 3x2. The first
-- subscript varies the fastest as you access
-- elements in storage order. You may have up to
-- 6 dimensions in an array in UPL.

Proc MultiDimArr(INOUT integer Arr(3,2))
 Integer i,j
 print 'Multi Dim Array = '
 loop i = I to 2
 loop j = 1 to 3
 print Arr(j,i),'
 end loop
 end loop
 print
end proc

2-35 Program Structure

Program Structure

-- Procedure SingleElement will accept an single ar ray
-- element as a parameter. Note that the parameter
-- 'Single' is actually a scalar (not an array).

Proc SingleElement(IN Integer Single)
 print 'value passed = ',Single
end proc

-- Procedure Main demonstrates passing arrays as
-- parameters to the user-defined procedures
-- given above. The last procedure call is to
-- the Intrinsic procedure 'Product'. It requires
-- an array of at least 14 elements. In this
-- example it will return data starting at array
-- element 5 and continue to array element 19.

Proc Main
integer Data(20)
integer Iarr(3,2)

Data(3) = 13
Data(4) = 14
Data(5) = 15

Iarr(1,1) = 1
Iarr(2,1) = 2
Iarr(3,1) = 3
Iarr(1,2) = 4
Iarr(2,2) = 5
Iarr(3,2) = 6

SingleDimArr(Data(1), 3, 3)

MultiDimArr(Iarr(1,1))

SingleElement(Iarr(2,1))
SingleElement(Data(3))

Product(Data(5))
print 'Personal Designer version ',
print Real(Data(6)/100):4:2

end proc

The program ChgTemp.upl in the beginning of this chapter shows how
to define and use user-defined procedures and functions. This program
looks for Fahrenheit temperature notations using the procedure
ScanTemp, converts them to centigrade using the function Centigrade,
and then uses the result in an assignment statement. Now that you are
more familiar with UPL program structure, go back and examine this
sample program.

2-36 UPL Revision 6.0

