

Personal Designer

User Programming Language
(UPL)

Revision 6.0

User Reference Guide

Chapter 1

Introduction

Introduction

UPL Application..1-3

What's in This User Reference Guide.. 1-4

How to Use This Manual.. 1-5

Notation Conventions...1-6

Sample Page... 1-8

UPL Statement, Procedure, Function.. 1-8

Type.. 1-8
Purpose... 1-8
Syntax... 1-8
Remarks.. 1-8
Example.. 1-8

Creating a UPL Program..1-9

Running a UPL Program...1-11

1-1

Introduction

User Programming Language (UPL), is the macro programming language
designed for use with the following Computervision Personal CAD/CAM
products:

Personal Designer

microDRAFT

Personal Machinist

Personal Machinist Universal

UPL Applications

UPL lets you write programs that enhance the performance of these
products The following are examples of what you ean do with UPL.

Automate Design and Drafting Procedures. UPL programs perform
established procedures by automating several commands. For example,
you can write a UPL program to lay the groundwork for a design session.
The program can call up your company's standard drawing border and
insert the existing parts common to all company projects, such as a
nameplate or assembly for a mechanical part.

Design Interactive Programs for Families of Parts. Interactive UPL
programs simplify the design of parts that share characteristics or belong
to the same family. For example, when creating gears, you must answer
basic questions such as how many teeth the gear will have and what the
gear's pitch is. A UPL program can ask these questions, build a gear
design based on your responses, and interact directly with the drawing
database.

Create Customized Commands. With UPL, you can write programs that
behave in the same way as a Personal Designer command. You supply
verbs, nouns, modifiers, and digitize marks and the program does the
work.

Design Tutorials. UPL can be used to design interactive tutorials that
familiarize new users with Personal Designer and with your company's
practices. UPL tutorials let new users learn at their own pace. UPL
tutorials let you train large numbers of users at the same time, since the
tutorials can be easily distributed on diskette,

1-3 Introduction

Introduction

What's in This User Reference Guide

The Personal Designer User Programming Language (UPL) Revision 6.0
UserReference Guide contains detailed information on all UPL
Statements, Intrinsics, and Program Components. In this book, the term
intrinsic refers to all procedures and functions that are already defined in
the code and can be called from your program.

This manual is not a programming tutorial, and is intended for individuals
with some programming background.

This manual has four sections and several appendices. A brief description
of each section and appendix follows.

Section 1, Introduction, outlines the scope and contents of the book,
identifies related material, presents the notation conventions used in the
book, and describes the installation and startup process.

Section 2, Program Structure, presents a program structure overview. This
section contains descriptions and definitions of the components of a UPL
program.

Section 3, Functional Listing of Statements and Intrinsics, groups UPL
statements and intrinsic procedures and functions by the tasks they
perform.

Section 4, Statements and Intrinsics, lists alphabetically, all of the UPL
statements and intrinsics. Consult this section for detailed information on
statement and intrinsic capabilities, procedures, and format.

Appendix A, Reserved Words, contains words that have special meaning
in UPL. These words cannot be used as names of variables, constants,
procedures, or functions in a UPL program.

Appendix B, System Variables, contains a description of the special
variabies that are predeclared in all UPL programs. These variabies hold
information that is passed between Personal Designer and the UPL
program.

Appendix C, Compiler Limits, lists the limits placed on a program by the
UPL compiler.

Appendix D, Error Messages, lists runtime error messages that the UPL
compiler outputs.

1-4 UPL Revision 6,0

Introduction

Appendix E, Internal Data Storage Format, defines the format in which
UPL stores data. The format for each data type and aggregate type is
given. Also included is information on file formats and the Transformation
Matrix.

Appendix F, ASCII Character Set, lists the standard character codes used
by PCs to represent alphanumeric information.

Appendix G, Direct Database Access, gives detailed information on direct
access to the Personal Designer database. This is a very advanced topic
and is included for the advanced user. Improper use of Direct Database
Access routines can damage your part database.

Appendix H, Writing Personal Designer Commands Using UPL,
demonstrates the use of intrinsics that give you access to the Personal
Designer user interface: the Verb-Noun processor, the Modifier processor,
and the getdata processor. This lets you write UPL programs that have the
same command syntax as Personal Designer commands.

Appendix I, System Variables, contains sample UPL programs.

How to Use This Manual

This rnanual contains detailed information on all UPL elements and
concepts. lt is formatted so that you can quickly locate information.
Statements and intrinsics are listed in alphabetical order.

Each statement or intrinsic description lists its purpose, type, syntax,
remarks and an example where appropriate. Intrinsics also have a list of
parameters.

lf you are a new UPL user, first read Sections 1, 2, and 3. These sections
introduce the UPL program elements and concepts that you will need to
know in order to use UPL. Then read some of the programs found in
Appendix I. You should be ready to start writing UPL programs of your
own.

For users who are already familiar with UPL, use this manual for detailed
information. Section 3 lists statements and intrinsics grouped by the tasks
they accomplish. Statements and intrinsics are listed alphabetieally in
Section 4 giving detailed information. Appendix A lists the reserved words
in UPL.

1-5 Introduction

Introduction

Notation Conventions

bold type Indicates inforrnation that must be spelled as shown.

italics Indicates a mandatory replacement that you type in.

regular type Indicates an optional replacement.

1 Vertical bars indicate to choose the items on either

side.

... Ellipses indicate that an entry may be repeated as

many times as is needed or desired.

Enter other punctuation such as commas, colons, and parentheses as shown.

1-6 UPL Revision 6.0

Introduction

When the word string is used in this manual, it refers to a UPL character
string. Do not confuse these with the string entities in Personal Designer.

The table below lists the abbreviations used with statements and
intrinsics.

 var name of variable
 array name of array
 flvar name of file variable
 ivar name of 16-bit integer variable
 i4var name of long-integer (32 bit) variable
 iarray name of integer array
 i4array name of long-integer array
 cvar name of coordinate variable
 carray name of coordinate array variable
 rvar name of real variable
 rarray name of real array variable
 bvar name of boolean variable
 barray name of boolean array variable
 svar name of character string variable
 sarray name of character string array variable
 const literal or named constant
 iconst literal or named integer constant
 rconst literal or named real constant
 cconst literal or named coordinate constant
 bconst literal or named boolean constant
 sconst literal or named character string

constant

 expr expression of any type
 iexpr integer expression
 i4expr tong integer expression
 rexpr real expression
 bexpr boolean expression
 cexpr coordinate expression

1-7 Introduction

Introduction

Sample Page

Below is a sample page used in Chapter 4, "Statements and Intrinsics":

UPL Statement, Procedure, Function

Type

Identifies command as a statement, procedure, or function and names
the class it belongs to.

Purpose

Describes what the statement or intrinsic does.

Syntax

Tells you how to input the statement or intrinsic. The syntax also shows you
how the statement or intrinsic appears in the program.

Remarks

Lists and defines the modifiers or parameters for each of the statements or
intrinsics.

Example

Provides an example of the statement or intrinsic.

1-8 UPL Revision 6.0

Introduction

Creating a UPL Program

When you are ready to enter the programming code into a file, use a
text editor. Enter your program into a file with the extension UPL.

The source is the program you write, using an ASCII editor of your
choice. The source file becomes the input for the next step in the
programming process.

The UPL compiler acts as a language translator, converting the source
program to a form the computer can understand and execute. As it
translates the statements, the compiler uncovers errors.

On DOS systems, compile UPL programs using the following syntax:

upl source,code,list /option.../option...

On UNIX systems, compile UPL programs using the following syntax:

upl source,code,list -option...-option...

Source, code, and list can be any legal path and file name. There must
be at least one space between the upl and source. There must be no
spaces between source, code, and list. There must be at least one
space between list and option.

Source is the input source text file name. '.UPL' is assumed if no file name
extension is given.

Code is the binary code file used as input to Personal Designer. You can give
code a different name from source if you want the executabie UPL program to
have a different name. '.UCD' is assumed if no file name extension is given. lf
code is specified, it must be separated from source by a comma.

List specifies the name of the error listing file with a different file name than the
source file name. '.LST ' is assumed if no file name extension is given.
A comma must separate code from list. lf code is omitted but list is not, separate
source and list with two commas. You must specify the LST option with this
choice.

Option has three possible choices. Each option must be preceded by a hyphen
(-) or a slash (/).

1-9 Introduction

Introduction

Ist This option places the error messages in a list file
 instead of displaying them on the screen. Printing the
 list file gives you a hard copy of error messages to use
 in debugging.

stat This option displays the compilation statistics during
 compilation. You must also use the Ist option when
 you use stat.

intel This option always generates code in Intel format
 (default).

spare Always generates code in SPARC format.

native Generates code that is native to the platform on which
 the compiler is running.

The compiler lists errors along with the location and type of each error to
make correction easy. To correct the errors or debug the program, edit the
source file with a text editor and then recompile the program. When no
errors are found, the compiler outputs a binary code file. After you have
obtained a binary code file of your program, you are ready to run your
program.

The table below lists a few compiling commands and shows the filenames
that result from these commands.

Command Source Code Listing

upl gear gear.upl gear.ucd
upl gear,xgear gear.upl xgear.ucd
upl gear,xgear /Ist /stat gear.upl xgear.ucd gear.Ist
upl gear,xgear,list -Ist gear.upi xgear.ucd list.Ist
upl gear,,list -Ist gear.upl gear.ucd list.Ist

 Table 1-1. UPL Compiling Commands

1-10 UPL Revision 6.0

Introduction

Running a UPL Program

UPL programs must be run from within Personal Designer. When you
run the program, Personal Designer executes the code generated by the
compiler. Using Personal Designer's RUN command is the most
common method of running a UPL program.

Enter RUN followed by the name of your program. The system looks for
a file with your program name and a UCD extension and executes this
file as a UPL program.

You can program Personal Designer to run a UPL program upon startup.
Copy your.UCD program into INIT.UCD. Make sure that INIT.UCD is in
either the current directory or the Personal Designer startup directory,
\PD6. When your system starts up, it will run this UPL program first.

You can also edit a tablet key or on-screen icon to carry out the RUN
command. See the Personal Designer documentation for more
information.

To make a UPL program behave like a Personal Designer command,
you can modify Personal Designer's verb-noun processor table. See
Appendix H, Writing Personal Designer Commands Using UPL, for more
information on this method.

1-11 Introduction

