

Personal Designer

User Programming Language
(UPL)

Revision 6.0

User Reference Guide

Appendix G

Database Format

Database Format

Disclaimer

This appendix describes the part or drawing database format and a set of
routines used to manipulate it at a subrecord level. This appendix is included
for reference purposes only and is not supported as part of the released
UPL product. The response center does not have the resources to answer
questions on this appendix. Computervision reserves the right to change the
database format and any of these routines without prior notification of our
users.

CAUTION:

• Computervision cannot assume responsibility for a part or drawing

which is modified by a program using any of these routines.

• The database format and the routines described in this appendix are

subject to change without notice. Incorrect use of this information or the
included intrinsic procedures can damage or destroy part databases.

• If this information changes in a new revision, programs which use this

information or the intrinsic procedures may not work and could possibly
damage your database.

Introduction To This Appendix

The first part of this appendix describes the database format. Next is a
description of the different methods of database access, followed by a more
detailed description of the parts of the database: the subrecords which make
up each kind of entity. The last portion of the appendix details the intrinsic
routines which are used to access the subrecords.

Overview of the Database Format

A Personal Designer part or drawing database file is made up of three parts:

1) a Header
2) the Master Index Block (MIB) portion and
3) the Part Data File (PDF) portion.

What Happens When You Activate a Part

When you activate a part in Personal Designer, the part file is opened and
the database is put into Part Temporary Files. The MIB portion is put into the
CVMIB.TMP file. The PDF portion is put into the CVPDRTMP file.

G-3 Database Format

Database Format

When you save a part, it writes the new database information to the named part
file. Otherwise, the data is lost. You can save a part using the Personal
Designer commands FILE, or EXIT with the save option. You can also set the
automatic save feature in the configurator.

The File Header

The file Header is l28 bytes long and contains various bookkeeping information
needed by Personal Designer when a part is activated. You will never need to
access this portion of the database directly because Personal Designer and
UPL do this for you.

Each entity in Personal Designer is defined by a database record. These
records are made up of subrecords. Each entity has one subrecord in the MIB
file, and at least one subrecord in the PDF file.

The MIB File

The MIB file consists of 16 byte subrecords, one for each entity in the part. This
subrecord holds attributes which are common to all types of entities – such as
entity type, layer, view of visibility, group, font, and color. Also included is the
”PDF pointer.” This is an offset into the PDF file where the rest of the
information about the entity resides. Entities are identified by the MIB number
which is assigned when the entity is created. This unique record number does
not change randomly. It remains the same until the part is exited and/or filed in
conjunction with the database packing option.

The Part Data File (PDF)

The PDF file is made up of subrecords of varying lengths, at least one for each
entity in the part. These subrecords hold information which is specific to each
type of entity. For example, the data defining a circle will be much different than
the data which defines a line. All PDF subrecords for a given entity are
contiguous. For each entity type, a specific subrecord ordering must be
maintained. Some subrecords are optional. Some subrecords may occur one or
more times. In addition to entity specific subrecords, there are subrecords for
properties, tags, and multiple views (MViews) which may be added to any
entity’s PDF record.

G–4 UPL Revision 6.0

Database Format

The list below describes entity subrecord types and their contents:

Entity Subrecord Types and Their Contents

AC –
AI –
AP –
AS –
Bl –
CP –
CT –
di –
dl –
dr –
D1 –
D2 –
D3 –
D4 –
D5 –
D6 –

DS –
DV –
DX –
EP –
EX –
gp –
GX –
I2 –
I4 –
IL –
IU –
L1 –
L2 –
LP –
MA –
MG –
mv –
MV –
NC –

Arc information
Interval appearance information for an entity in an MView
Partial arc information – for angular dimensions
Associativity record
General purpose character data (byte)
Toolpath Cut vectors
Centerline data
Dimensioning integer data
Dimensioning logical data
Dimensioning real data
Dimensioning general information
Auxiliary text string for dimensions
Auxiliary text string for dimensions
Dimension entity association
Dimension prefix text string
Reference entity for parallel or perpendicular orientation
of a dimension
Display Image information
MView transform data
MView viewing data
Ellipse information
Extents information
General parameters
NURB curve and surface image data
General purpose integer data (2 byte, signed)
General purpose integer data (4 byte)
Image list (figure name)
Nsurface trim boundary 2D control points
Dimension extension line endpoint coordinates
Dimension extension line endpoint coordinates
Plane information
Entity appearance information in an MView
Drawing MView list
MView definitions
MView visibility assignment of an entity
NURB curve header

G–5 Database Format

Database Format

 NM –
NS –
NT –
NV –
OF –
PA –
PC –
PH –
PU –
PX –
R4 –
R8 –
SP –
TB –
TC –
TD –
TF –
TG –
TI –
TR –
TS –
TX –
U2 –
VN –
WD –
XD –
XF –
XH –
XN –
XP –
XT –
XZ –

Name of an entity
NURB surface header
NURB surface trim boundary header
NURB knot vector
Offset for all dimensions
Entity property information
Bezier curve and surface header
NURB control points
NURB trim boundary control points
Coordinates of a point
General purpose single-precision real data
General purpose double-precision real data
Evaluation point information
NURB trim boundaries
Text color for all dimensions
Text format and orientation information
Transform matrix
Entity tag information
Toolpath integer data
Toolpath real data
Toolpath spin data
Text character string and Bezier extents data
General purpose integer data
Working View Transformation matrix
Wide string information (vertices)
Nurbs interpolation points
Exploded entity type list
Cross – hatching information
Coordinates of vertices in a string
Cross hatching information
NURB extents data
Endpoints of a line

Accessing the Database

There are three ways of directly accessing the database: Reading, Modifying,
and Writing. There are intrinsic procedures for each method.

Reading involves simply retrieving entity data from the database. The intrinsic
routines simply return the information in the parameters supplied.

G–6 UPL Revision 6.0

Database Format

Modifying involves changing already existing subrecord data. You should
first read the existing data, then change that data, and finally, modify the
subrecords. This will minimize the chances of damaging your part. Be sure
that the new data is valid for that type of entity. Invalid data can cause the
system to hang or damage your part.

Note that if UNDO is selected on, or if the new PDF subrecord data
occupies more storage than the original data, the following happens: The
entity’s PDF subrecords are copied to the end of the PDF file to allow for
expansion. The subrecords are then modified and the PDF pointer in the
MIB subrecord is updated to point to them, instead of the old ones.

Writing involves adding new data to an entity. This is generally done in two
situations. The first is when you are adding an additional PDF subrecord,
such as a property subrecord, to an entity. The second is when you are
creating a new entity in the database.

When adding a PDF subrecord to an existing entity, the following happens:
All of the entity's PDF subrecords are copied to the end of the PDF file to
allow for expansion. The new subrecords are then added and the PDF
pointer in the MIB subrecord is updated to point to them, instead of the old
ones.

When creating a new entity, the MIB subrecord is first added to the end of
the MIB file. The new PDF subrecords are then added by writing them to the
end of the PDF file. Finally, the PDF pointer (in the MIB subrecord) is
updated to point to the new PDF subrecords.

Be sure the data to be written to or modified in the subrecords are valid.
Check the database description in this appendix and be sure to follow the
given ordering for the subrecords. Invalid data or subrecords which are out
of order can cause the system to hang or damage your part.

Exiting or filing with the pack database option removes all the unused entity
records in the database. Subrecords abandoned due to the PDF expansion
mentioned above are removed. Also removed are deleted entities. When an
entity has been deleted, its entity type field of its record is negated.

G–7 Database Format

Database Format

Based Variables

Accessing certain subrecord types requires the use of based variables. A based
variable acts for the programmer as a drafting template would for a draftsman. It
superimposes a structure or form on an unstructured block of data. For
example, to modify an ellipse, you must use based variables to base the
contents of the EP subrecords to a REAL array and pass that array to the
GetSrR, PutSrR, and/or ModSrR routines. See the examples at the end of this
appendix.

Based variables are similar to normal variables except that their addresses or
storage locations are based on the storage location of a previously defined
variable. This is similar in concept to the FORTRAN EQUIVALENCE statement.
The syntax for declaring a based variable is:

<based var> @ <var>[+<iconst>]

Replace <based var> with the based variable’s name. Replace <var> with
the name of the previously defined variable. Replace <iconst> with an
integer constant giving the number of bytes from the beginning of <var> to
place <based var>. Variables based to an array usually start with an offset
of 2 to allow for the array’s internal size descriptor. Appendix E gives the
internal data storage for variables. It should be used to help determine
<iconst>.

Based variables are declared in the variable declaration section of a
procedure or function or in the Group section. Those declared in a
procedure or function can be based to variables defined in the global
variable Group section. Both based and non – based variables can be
declared on a single variable declaration line.

Based variables cannot be arrays, however they are usually based to an array
variable. When basing variables to an array, as in the first example, no
parentheses or element numbers can be used in the based variable. The offset
should usually start at two to allow for the length field of the array structure.

G–8 UPL Revision 6.0

Database Format

Examples:

REAL A(20), A1 @ A+2, A2 @ A+6, A20 @ A+78

INTEGER BUFFER(82), BUFFER_LENGTH @ BUFFER
REAL X1 @ BUFFER+2, X2 @ BUFFER+6
COORD C1 @ BUFFER+10

Entity Format

The following is a description of the database format of each entity used
by Personal Designer. The list describes all the supported entity types –
their name, type, and subrecords used.

MIB Subrecord

Every entity has an MIB portion with exactly the same format. It is a 16-
byte subrecord which contains the following fields in the following order:
entity type, PDF pointer, layer number, view of visihility, group number,
line font, and color number. Each of these fields is a 2-byte integer
excepting the PDF pointer, which is a 4-byte integer. Note that the high
order byte of the line font field contains flags related to the use of multiple
views, as follows:

Bit Meaning

7 MV subrecord exists in PDF portion

6 MA subrecord exists in PDF portion

5 AI subrecord exists in PDF portion

4 – 0 (Reserved)

where bit 7 is the most significant bit of the byte.

Use the intrinsic procedures ReadEnt, WriteEnt, and AddEnt to access
the MIB subrecord. See Direct Access Intrinsics (below) for more
information.

G–9 Database Format

Database Format

PDF Subrecord

PDF Subrecord NOTE: The PDF subrecords are listed in rhe EXACT order that
they must be written to the database.

Most PDF subrecord types have direct access intrinsic procedures written
especially for them. Those which do not are listed at the end of the section with
an appropriate based variable template. These templates may be entered and
stored in a text file. The compiler directive $Include may then be used to insert
that text file into your program. Then use the appropriate GetSR*, ModSR*, or
PutSR* routine to access the data, where * represents either C, I, R, or S. See
the Direct Access Intrinsics section (below) for more information.

All coordinate data is stored in model space coordinates unless otherwise
noted.

Type Entity

1 Line
 XZ - line endpoints

2
 String (or Arrow)

 XN - coordinates of string vertices
 WD - coordinates of vertices if a wide string (optional);

 If a WD subrecord is present, XN is used for
 digitizing.

 Note: If the AS subrecord is present, the string is a nodal line.
 TX - character string (optional);

The TX subrecord is present only if the string is being
used with the PIXL property for specialized repaint (for
build menus and dialog boxes).

3
 Arc
 AC - view transform, origin, radius, start angle, end angle

4 Text

 TD - X/Y view transform, justification, origin, height, width,
 line spacing

 TX - character string; if the TX subrecord has no cha-
racters, it is a text node, which is displayed as a small
triangle and is a placeholder for text to be added later.

G-10 UPL Revision 6.0

Database Format

Type Entity

5 Point
 PX - coordinates of point
 SP - evaluate nsurface data

6 Linear Dimension
 TD – X/Y view transform, justification, origin, height, width,
 line spacino,
 TX - dimension (stored as a character string)
 L1 - endpoints of first witness line (optional)
 L2 - endpoints of second witness line (optional)
 XN - arrow coordinates (one or more)
 D1 - dimension and tolerance information
 D2 - overriding text string (optional)
 D3 - alternate text strin- (optional)
 D4 - dimension entity association
 D5 - prefix text string (optional)
 D6 - dimension direction (parallel or perpendicular)
 TC - dimension text color (optional)
 OF - dimension offsets (optional)
 Note: The vertex fields in the D4 subrecord may contain integers
 from 1 - 1000. A - 1 value means the association is to the
 entity's origin. A positive value means the association is to
 the nth vertex of the entity. Zero means no association.
 Linear dimensions without a D4 subrecord are associative to
 the two dimension points in the D1 subrecord (if D1 is
 present). lf one of the vertex numbers in the D4 subrecord is
 zero, that dimension is associated to the corresponding
 dimension point.

7 Label (Point Dimension)
 TD - X/Y view transform, justification, origin, height, width,
 line spacinc,
 TX - dimension (stored as a charaeter string)
 XN - arrow string coordinates (one or more)
 D1 - dimension and tolerance information
 AP - balloon arc data (optional; one or more)
 D2 - overriding text string (optional)
 D3 - auxiliary text string (optional)
 D5 - prefix text strin- (optional)
 TC - dimension text color (optional)

G-11 Database Format

Database Format

Type Entity

Label (continued)
Note: This entity type may be referred to as a balloon if the AP

 subrecord is present, or a PDIM (point dimension), in which
 the text of the label is the XYZ coordinate at the point of
 the arrowhead.
 The linear dimension text should be center justified.

8 Radius Dimension
 TD - X/Y view transform, justification, origin, height,
 width, line spacing
 TX - dimension (stored as a character string)
 XN - arrow string coordinates (one or more)
 D1 - dimension and tolerance information
 D2 - overriding text string (optional)
 D3 - alternate text string (optional)
 D5 - prefix text string (optional)
 TC - dimension text color (optional)

9 Angular Dimension
 TD - X/Y view transform justification, origin, height, width,
 line spacing

 Note: Justification varies according to the standard in use;
 ANSI is left justified, while ISO and JIS are center justified.

 TX - dimension (stored as a character string)
 L1 - endpoints of first witness line (optional)
 L2 - endpoints of second witness line (optional)
 XN - arrow coordinates (one or more)
 AP - partial arcs' oriein, beginning and ending angles
 (optional; one or more)
 D1 - dimension and tolerance information
 D2 - overriding text string (optional)
 D3 - alternate test string (optional)
 D5 - prefix text string (optional)
 TC - dimension text color (optional)
 OF - dimension offsets (optional)

G-12 UPL Revision 6.0

Database Format

Type Entity

10 Cross-hatch
 XH - endpoints of cross-hatch lines (one or more)
 XP - cross-hatch angle, distance, offset, pattern,
 number of boundaries
 XN - vertices of boundaries (one or more)
 Note: These subrecords may appear in any order, and multiple
 XH - subrecords may be used for patterns, but the total PDF
 record size cannot exceed 32K.
 The solid fill option is a function of the graphics display
 device driver only, and does not plot.

11 Figure Instance
 EX - extents of ficure (transformed from figure definition)
 TF - transformation matrix, MIB of figure's image list
 entity (entity type 147)
 XF - exploded entity type list
 The XF subrecord is present only on an XFIGURE
 or NFIGURE. Also, if the first word in a XF subrecord
 is "-1", all entity types are exploded.
 AS - exploded entity association pointers
 The AS subrecord is present only on an XFIGURE
 or NFIGURE.

12 Diameter Dimension
 TD - X/Y view transform, justification, origin, height,
 width, line spacing
 TX - dimension (stored as a character string)
 L1 - endpoints of first witness line (optional)
 L2 - endpoints of second witness line (optional)
 XN - arrow coordinates (one or more)
 D1 - dimension and tolerance info
 D2 - overriding text string (optional)
 D3 - alternate text strine (optional)
 D5 - prefix text string (optional)
 Note: The text of a type 2 diameter dimension should be center
 justified.
 TC - dimension text color (optional)
 OF - dimension offsets (optional)

G-13 Database Format

Database Format

Type Entity

13 MView
 TD - X/Y view transform, justification, origin, height,
 width, line spacing
 TX - MView frarne or fold line text
 XN - MView frame coordinates or fold line endpoints
 DX - MView's rotation vector, depth, originating view,
 MView nurnber
 DV - MView's rotation transform, translation vector
 Note: MViews are 3D views based on the techniques of descriptive
 geometry. MViews are active onty when in view 1, and
 further depend on the status flag in the PPE. Each entity
 that appears in an MView has a DG subrecord containing the
 numbers of the MView in which it should be displayed.

14 Ellipse

 EP - ellipse's view transform, origin, radius 1, radius2, starting
angle, ending angle

15 Construction Line
 XZ - Two points defining infinite line
 Note: Although a construction line contains two endpoints, these
 define an infinite length veetor which is not considered
 in caiculating the drawing extents.

16 Cpole (Bezier curve)

 PC - number of poles points in polygon (NP), number of
vertices in string representing curve (NV), polygon
display flags

 XN - coordinates of pole points (one per pole)
 WD - vertices of string representing curve

 TX - Polygon minimum, polygon maximum, curve minimum,
eurve maximum (stored as 4 coordinates based to a text
string)

17 Spole (Bezier surface)

 PC - number of poles points in U direction (NU), number of
vertices in string representing curve, polygon display
flags, number of pole points in V direction (NV), number
of mesh lines in U direction (MU), number of mesh lines
in V direction (MV)

G-14 UPL Revision 6.0

Database Format

Type Entity

 Spole (continued)
 XN - pole coordinates (NV records of NU poles)
 WD - vertices of mesh strings (one for each U strinc, followed

by one for each V string)
 TX - Polygon minimum, polygon maximum, curve minimum,

curve max., (stored as 4 coords. based to a text string)

18 Plane
 LP - origin point, normal vector, bounds
 WD - vertices of string representing plane (5 vertices:
 4 corners of square. vert #1 = vert#5)

21 Connect node
 PX - coordinates of node.

22 Centerline
 XZ - line endpoints (see Note with CT below)
 AC - arc data (see Note with CT below)
 CT - centerline data
 Note: Centerline types are: linear (1), radial (3), and
 composite (10). If the type specified in the CT subrecord
 is linear, then the first subrecord must be XZ and no AC
 will be present. lf the specified type is radial, then the first
 subrecord must be AC and no XZ will be present. lf the
 specified type is composite, then neither an XZ or AC
 subrecord will be present.
 XN - locations of overriding dash locations (optional)
 XH - centerline image

23 Ordinate Dimension
 TD - X/Y view transform. Justification associativity
 flag, MView no., text font no., slant angle.
 TX - dimension (stored as character string)
 L1 - endpoints of first witness line (optional)
 L2 - endpoints of second witness line (optional)
 XN - arrow coordinates (one or more)
 D1 - dimension and tolerance info
 D2 - overriding text string (optional)
 D3 - alternate text string (optional)

G-15 Database Format

Database Format

Type Entity

 Ordinate Dimension (continued)
 D4 - dimension entity association.
 D5 - prefix text string (optional)
 TC - dimension text color (optional)
 OF - dimension offsets
 Note: Ordinate Dimension text should be center justified. Vertex

fields in the D4 subrecord may contain integers ranging
from - 1 to 1000 . A - 1 means the association is to the
entity's origin. A positive value means the assoeiation is
to the entity's nth vertex. A zero means no entity
association. lf one of the vertex numbers in the D4
subrecord is zero, then that end of the dimension is
associative to the corresponding dimension point.

30 NURB eurve (Nspline)
 NC - NURB curve header, degree of eurve, curve flags
 NV - knot vector (present only if 'uniform 'flag is set)
 PH - control points
 GX - TGF index currently must be set to 0,0.
 XT - 3D extents, polygon minimum, polygon
 maximum, curve minimum, curve maximum
 TB - curve trim boundaries, parametrie start and end
 XD - interpolation data points

31 NURB surface (Nsurface)
 NS - Nsurface header degrees (dU, and dV) of surface,
 count of control points (mu and mv), surface flags,
 mesh of surface (ku and kv), surface trim data,
 interpolation points.
 NV - knot vector in U direction (mu + du + 1 reals)
 NV - knot vector in V direction (mv + dv+1 reals)
 PH - polygon points (mv subrecords)
 GX - mesh image 3D points eurrently must be set to 0,0.
 XT - 3D extents; polygon minimum, polygon maximum,
 surface minimum, surface maximum
 NT - 2D trim boundary-, nspline curve header - degree,
 count polygon points, count of critical points

G-16 UPL Revision 6.0

Database Format

Type Entity

 NURB surface (continued)
 PU - trim boundary polygon points
 TB - knot vector for trim curve
 TC - knot vector for critical points (not currently being used)
 IU - boundary interpolation points
 XD - coordinates of data points (pv subrecords) if 1!=0

35 3-axis Toolpath
 XN - Toolpath coordinates (one or more subrecords)
 TI - Toolpath inte-er data
 TR - Toolpath real data
 PA - property (used for character data)
 The PA subrecord appears only on the first entity
 in the path.

36 2 1/2-axis Toolpath
 TI - Toolpath integer data
 TR - Toolpath real data
 PA - output file name, toolpath comment
 CP - number of Z cuts, CPL origin
 TS - tool spin direction and feed rate
 XN - coordinates of tool path
 AC - arc information (TS, XN, AC may
 repeat one or more times)

145 Display (Image)
 DS - display extents, associated view, xmin, xmax, ymin,
 ymax, screen scale, view number.
 Note: The MIB record is non-standard, and stores the image number

in the layer field. Also, the image entity may be referred to as a
display.

146 View
 VN - working view transform
 PX - origin of CPL
 Note: The view number is stored in the MIB subrecord's layer field.
 Note: lf the view is defined as a CPL, a PX subrecord will be present.

This cives the origin of the CPL.

G-17 Database Format

Database Format

Type Entity

147 Figure Definition
 IL - figure name
 EX - figure extents
 Note: The MIB subrecord holds figure information:
 a) The view of visibility (VVIS) field holds the
 MIB number of the figure's first entity
 b) The group field holds the number of entities in the figure.

c) The line font field holds the time the figure was last filed.
d) The color field holds the date the figure was filed.

 The figure definition entity may also be referred to as a
'Figure Image List.'

 Each of the entities in a figure is loaded into the current
part; 1.000 is added to the type field of the MIB record of
the figure's entities, to differentiate them from the part's
entities. Although you may change the color, layer, etc. of
your figure instance, the figure image itself will still show up
with its original colors on its original layers. When a part is
activated, Personal Designer checks the time and date
stored here against the time and date of the source
drawing-, if the drawing has been changed, the user is
optionally prompted to update the figure. The source
drawing file name may contain a drive and path designator
if the user specified an explicit path when the figure was
inserted. This may cause problems when a part is moved
from one operating system to another. If no path is
specified, the environment variable "FIGPATH" locates the
source part.

148 Part Parameter Entity
 EX - Drawing extents
 dl - Dimensioning logical parameters
 di - Dimensioning integer parameters
 dr - Dimensioning real parameters
 gp - general parameters
 R4 - additional real dimension data
 I2 - additional integer dimension data

G-18 UPL Revision 6.0

Database Format

Type Entity

 Part Parameter Entity (continued)
 R4 - dual dimension real data
 I2 - dual dimension integer data
 B1 - dual dimension prefix
 B1 - dual dimension suffix
 R4 - centerline real data
 B1 - color-by-layer data
 I2 - color-by-layer table
 mv - MView definitions
 Note: There should never be more than one PPE entity in a part.
 Also, the PPE entity is created or modified each time a
 ZOOM ALL command is executed.
 Personal Designer tries to make this entity number 1, but
 some circumstances cause this entity to appear later in the
 database. With the exception of the drawing extents, the data
 in this entity reflect the state of the part when it was
 activated. Any commands issued when the part is open will
 not change the subrecord data, but instead change the
 corresponding system memory variables. The subrecord is
 updated only when the part is filed. To obtain the current
 values for the data contained in this entity, use the
 SYSVARI and SYSVARR UPL intrinsic functions.

149 Appended Datafile
 TX - data (one or more subrecords)
 Note: The data stored in the TX subrecord can be of any type.
 The subrecords should not exceed 1000 bytes in each length.

lf the data you want to store exceeds 1000 bytes, carry over
the data to another TX subrecord. For this reason, it is
important that the order of the subrecords be maintained.

 Note: The MIB record is non-standard, and it stores the file name
 or data type name in the Vvis, Group, Font, Flags,
 and Color fields. The file name or data type name is
 case-sensitive and should be padded with nulls (0) if
 necessary.

G-19 Database Forniat

Database Format

Type Entity

 Appended Data file (continued)
 Note: The following data file types are currently defined:

 Type number Description

 -2......-32.768 User-defined non-specific data
 -1 User-defined ASCII text data
 0 Unknown data
 1 ASCII text data
 2 Non-specific data
 3 Shaded image
 4 TIFF
 5 Sun Raster
 6 String macro file
 7 Keyboard macro file
 8 Color palette definition file
 9........32.767 Reserved

Note: You can use the DISPLAY APPENDEDFILE command to

display data in an appended data file. lf the absolute
value of the file type number is < 1 or > 10.000, the data
is displayed on the screen as ASCII text. lf the absolute
value of the file type number is > 1 and :5 10.000, the
DISPLAY APPENDEDFILE command does not display
the data.

 Note: API programs can be "registered" to gain control of the
DISPLAY APPENDEDFILE command (prior to the
application attempting any display) and may display
non-ASCII data using whatever means the API program
provides. For more information, refer to the API
Programmer's Reference.

G-20 UPL Revision 6.0

Database Format

Type Entity

150 Drawing sheet
 MG - drawing MV list
 Note: The MIB record is non-standard, and it stores the sheet name

in the Vvis, Group, Font, Flags, and Color fields. The sheet
narne is case-sensitive and should be padded with spaces if
necessary.

Other Subrecords

The following Part Data File (PDF) subrecords are not supported with the
Rsubrec__, Msubrec__, Wsubrec__ intrinsic routines. Instead, enter the
subrecord templates given below into your program and use the GetSR__,
ModSR__, PutSR__ intrinsies. You can enter these as text files and put in
your program with the $lnclude compiler directive.

G-21 Database Format

Database Format

--- --
-- AI Subrecord definition ------------------------ --
--- --
-- Multiple View (MView) interval appearance info.
-- This is color and font appearance info that is
-- generated by the Personal Designer command CHANG E
-- APPEARANCE INTERVAL. (Note: whole-entity MView
-- appearance info is held in the MA subrecord). AI
-- subrecords occur on each entity placed in an
-- MView AND selected in a CHANGE APPEARANCE
-- INTERVAL command. One AI subrecord occurs for
-- each interval in the MView in which the entity
-- appearance is changed. Also, each entity may
-- have its appearance changed in different MViews,
-- resulting in many AI subrecords on an entity.
-- 'MVnumberAI' is the MView number in which the
-- appearance is changed. 'ColorFontMA' holds the
-- font in two consecutive bytes. The order of thes e
-- bytes may be implementation dependant. On
-- machines such as Intel and DEC MIPS the font is
-- in low order byte and the color is in the high
-- order byte. On Sun SPARC machines the reverse is
-- true. A value of zero in either byte means no
-- change: use font or color in MIB subrecord.
-- ParamStartAI and ParamEndAI are the parametric
-- start and finish of the interval.
--- --
-- Use with GetSrI, ModSrI, and PutSrI intrinsics
-- 1) Access desired variables in 'AIsubrec'
-- 2) Substitute for the 'ibuf' parameter
--- --

integer AIsubrec(6)
integer MVNumberAI @ AIsubrec + 2
integer ColorFontAI @ AIsubrec + 4
real ParamStartAI @ AIsubRec + 6
real ParamEndAI @ AIsubRec + 10

G-22 UPL Revision 6.0

Database Format

-- AS Sub-record definition ---------------------

-- Entity associativity subrecord.
-- The associativity type and MIB number of the
-- associated entity. For each associated entity
-- there is a type and MIB number entry.
-- With parent-child associativity, one entity is
-- associated to another (one way). With peer
-- associativity,both entities point to each other.
-- Association types are:
-- Move or delete (MOVD): 1
-- Delete only (DELO): 2
-- Move only (MOVO): 3
-- Nodal line end 1: 101
-- Nodal line end 2: 102
-- NOTE: AS sub-record has a variable length.
-- You may have to adjust size of the 'ASsubrec'
-- array for your needs. The maximum size for
-- AS subrecord is 3000 assoc. (12000 bytes).

-- Use with GetSrI, ModSrI, and PutSrI intrinsics
-- 1) Access variables named below.
-- 2) Substitute 'ASsubrec' for the 'ibuf'
-- parameter.

integer ASsubrec(101)
integer AssoTypelAS @ ASsubrec + 2
integer AssoEntlAS @ ASsubrec + 4
integer AssoType2AS @ Assubrec + 6
integer AssoEnt2AS @ Assubrec + 8
integer AssoType3AS @ Assubrec + 10
integer AssoEnt3AS @ Assubrec + 12
integer AssoType4AS @ Assubrec + 14
integer AssoEnt4AS @ Assubrec + 16
--etc
--etc

G-23 Database Format

Database Format

-- 'CP' Sub-record definition - (2 1/2 Axis) ----

-- 2 1/2 Axis Cut Vector information.

-- Holds Number of Z Cuts,
-- Z Normal Vector / Incremental Cut Vector
-- CPL origin.
--
-- Appears as set of 4 subrecords TI, TR, PA, CP
-- on the first toolpath entity in a multiple
-- toolpath series.
--
-- The Normal Vector is the Z axis of the CPL.
-- Upon creation, the length is the depth of
-- the cut if Z Cut Number > 1.
--
-- real CPsubrec(7)
-- real NumZCutsCP @ Cpsubrec + 2
-- coord ZnormIncCutVecCP @ Cpsubrec + 6
-- coord CPLOriginCP @ Cpsubrec + 18

-- 'di' Sub-record definition -------------------

-- Dimension integer information.
-- Integer values stored on Part Parameter entity
-- (PPE). There is usually no need to access these
-- directly. Instead, use the SysVarI intrinsic to
-- access integer system variables #2001-2004, 2031 .
-- See SysVarI pages in this manual for more info.

-- If you must access directly:
-- Use with GetSrI, ModSrI, and PutSrI intrinsics
-- 1) Assign desired integers in 'disubrec'
-- 2) Substitute for the 'ibuf' parameter

integer disubrec(5)

G-24 UPL Revision 6.0

Database Format

-- 'dl' Sub-record definition ---------------------

-- Dimension logical information. True/false values
-- stored on Part Parameter entity (PPE). There is
-- generally no need to access these directly.
-- Instead, use the SysVarI intrinsic to access
-- integer system variables #2005-2038. See SysVarI
-- pages in this manual for more information.

-- If you must access directly:
-- Use with GetSrI, ModSrI, and PutSrI intrinsics
-- 1) Access desired bits in 'dlsubrec'
-- 2) Substitute for the 'ibuf' parameter
-- Use UPL intrinsics SetBit and GetBit to
-- manipulate the 1-bit logical values.

integer dlsubrec(20)

-- 'dr' Sub-record definition ---------------------

-- Dimension real information. Real values stored
-- on Part Parameter entity (PPE). There is
-- generally no need to access these directly.
-- Instead, use the SysVarR intrinsic to access
-- real system variables #2001-2011. See SysVarR
-- pages in this manual for more information.

-- If you must access directly:
-- Use with GetSrR, ModSrR, and PutSrR intrinsics
-- 1) Access desired reals to 'drsubrec'
-- 2) Substitute for the 'rbuf' parameter

real drsubrec(11)

G-25 Database Format

Database Format

-- D1 Sub-record definition ---------------------

-- Dimension parameter information.
-- Used on all dimension types, however format
-- of record is different for each dimension type.
-- Information below is entity specific, followed
-- by that which is common to all entity types.
-- For Linear Dimensions (LDIMs):
-- The coordinates of the ends of the entities
-- digitized when creating the dimension.
-- Dimension orientation (1=horz, 2=vert, 3=ptpt)
-- Dimension centering (1=centered, 2=not)
-- For Ancrular Dimensions (ADIMs):
-- MIB numbers and end numbers of the entities
-- digitized when creating the dimension.
-- Labels, Point Dimensions, Balloons (LDIMs):
-- MIB of the dimensioned arc or circle,
-- multiple view used when inserting dim.
-- For Diameter (DDIMs), Radius Dimensions (RDIMs):
-- MIB of the dimensioned arc or circle,
-- multiple view used when inserting dim.
-- Dimension orientation (1=horz, 2=vert, 3=ptpt)
-- diam notation type (1='DIA', 2= symbol),
-- symbol position (1=suffix, 2= prefix, 3=none)
-- For ALL dimensions:
-- Dimension angle, offset, arrow size, plus
-- tolerance, minus tolerance, scale, arrowhead
-- direction (1=in, 2=out), dimension standard
-- (1=ISO/JIS, 2=ANSI), text alig=ent (I=aligned
-- 2=no), arrowhead type, tolerance type,
-- tolerance precision, construction plane used to
-- create dimension, dimension precision.

-- Use with GetSrI, ModSrI, and PutSrI intrinsics
-- 1) Assign desired integers in 'dlsubrec,
-- 2) Substitute for the 'ibuf, parameter

integer D1SubRec(42)

G-26 UPL Revision 6.0

Database Format

-- For LDIMS:
coord End1D1 @ D1SubRec + 2
coord End2D1 @ D1SubRec + 14
integer LDimOrientD1 @ D1SubRec + 62
integer CenterD1 @ D1SubRec + 80

--For ADIMS:
integer MibLinelD1 @ DISubrec + 2
integer MibLine2D1 @ D1Subrec + 4
coord EndLinelD1 @ D1Subrec + 6
coord EndLine2D1 @ D1Subrec + 18

-- For Label:
integer MibLabD1 @ D1Subrec + 2
integer LabMViewD1 @ D1Subrec + 4

--For DDIMS, RDIMS:
integer MibArcD1 @ D1Subrec + 2
integer DimMViewD1 @ D1Subrec + 4
integer DimOrientD1 @ D1SubRec + 62
integer DWordSymD1 @ D1Subrec + 80
integer IDummyD1 @ D1Subrec + 82
integer PreSuffD1 @ D1Subrec + 84

--For All DIMS
real AngleD1 @ D1SubRec + 26
real OffsetD1 @ D1SubRec + 30
real ArrowSizeD1 @ D1SubRec + 34
real PlusTolD1 @ D1SubRec + 38
real MinusTolD1 @ D1SubRec + 42
real TolHgtD1 @ D1SubRec + 46
real ScaleD1 @ D1SubRec + 50
real RdummyD1(2) -- reserved - do not use
integer ArrOrientD1 @ D1SubRec + 64
integer DimTypeD1 @ D1SubRec + 66
integer AlignmentD1 @ D1SubRec + 68
integer ArrowTypeD1 @ D1SubRec + 70
integer TolTypeD1 @ D1SubRec + 72
integer TolPrecD1 @ D1SubRec + 74
integer CPLusedD1 @ D1SubRec + 76
integer PrecD1 @ D1SubRec + 78

G-27 Database Format

Database Format

-- D2 Sub-record definition ---------------------

-- Use with GetSrS, ModSrS, and PutSrS intrinsics
-- 1) Assign desired string to 'D2subrec,
-- 2) Substitute for the 'sbuf' parameter
-- Note: D2 sub-record has a variable length.
-- You may have to adjust size of string for
-- your needs.

string D2subrec:256 -- Overriding text string

-- D3 Sub-record definition ---------------------

-- Use with GetSrS, ModSrS, and PutSrS intrinsics
-- 1) Assign desired string to 'D3subrec'
-- 2) Substitute for the 'sbuf' parameter
-- Note: D3 sub-record has a variable length.
-- You may adjust the size of the string for
-- your needs.
--
string D3subrec:256 -- Auxiliary text string
--

-- D4 Sub-record definition ---------------------

-- Dimension entity association.
-- The entity and vertex number (within the
-- entity) which make up the endpoints of the
-- dimension. Allows for updating of the dims
-- if either entity is moved.

-- Use with GetSrI, ModSrI, and PutSrI intrinsics
-- 1) Access variables named below.
-- 2) Substitute 'D4subrec' for the 'ibuf'
-- parameter.

integer D4subrec(4)
integer Ent1MIB @ D4subrec + 2
integer Ent1Vert @ D4subrec + 4
integer Ent2MIB @ D4subrec + 6
integer Ent2Vert 9 D4subrec + 8

G-28 UPL Revision 6.0

Database Format

-- D5 Sub-record definition ---------------------

-- Use with GetSrS, ModSrS, and PutSrS intrinsics
-- 1) Assign desired string to 'D5subrec'
-- 2) Substitute for the 'sbuf' parameter
-- Note: D5 sub-record has a variable length.
-- You may have to adjust size of string for
-- your needs.

string D5subrec:256 -- Auxiliary text string

-- D6 Sub-record definition ---------------------

real D6subrec(30)
coord pnt1 @ D6subrec + 6
coord pnt2 @ D6subrec + 18
-- pnt1/pnt2 endpoints of orientation line

G-29 Database Format

Database Format

-- DV Sub-record definition ---------------------

-- Multiple View transform information.
-- Rotation vectors (directional cosines) and
-- translation from origin.

-- Use with GetSrR, ModSrR, and PutSrR intrinsics
-- 1) Substitute D5subrec for the 'rbuf' parameter.
-- 2) TransformDV is start address of transform
 array. Use with NullTransform, GetCPL,
 GetView, MapTo, MapFrom, etc. See App. E
 Interanl Data Storage Format under
 Transform array for more info.
-- 3) TranslationDV is the offset from origin.

real DVsubrec(12)
real TransformDV @ DVsubrec + 2
coord TranslationDV @ DVsubrec + 38

--
-- DX Sub-record definition --------------------
--
-- Multiple View view orientation data:
-- Rotation vector, Z-depth, View used to define
-- the MView, and defined MView number.

-- Use with GetSrR, ModSrR, and PutSrR intrinsics
-- 1) Substitute DXsubrec for the 'rbuf' parameter.
-- 2) If CPL number is used to define an MView
-- FromMVNumDX should be negative.

real DXsubrec(5)
coord RotVectDX @ DXsubrec + 2
real ZDepthDX @ DXsubrec + 14
integer FromMVNumDX @ DXSubrec + 18
integer ThisMVNumDX @ DXsubrec + 20

G-30 UPL Revision 6.0

Database Format

-- EP Sub-record definition ----------------------- --
--- --
-- Ellipse (entity type #14) information. Rotation
-- vectors (directional cosines), origin, major
-- radius, minor radius, starting and ending angles .
--- --
-- Use with GetSrR, ModSrR, and PutSrR intrinsics
-- 1) Substitute D5subrec for the 'rbuf' parameter.
-- 2) TransformEP is start address of transform
-- array. Use with NullTransform, GetCPL, GetVie w,
-- MapTo, MapFrom, etc. See App. E, Internal Dat a
-- Format under Transform array for more
-- information.
-- 3) OriginEP is the offset from model space origi n.
--- --
-- real EPsubrec(16)
-- real TransformEP @ Epsubrec + 2
-- coord TranslateEP @ Epsubrec + 38
-- real MajorRadEP @ Epsubrec + 50
-- real MinorRadEP @ Epsubrec + 54
-- real StartAngEP @ Epsubrec + 58
-- real EndAngEP @ Epsubrec + 62
--- --

--- --
-- 'gp' Sub-record definition --------------------- --
--- --
-- General parameter information. System values
-- stored on Part Parameter entity (PPE). There is
-- generally no need to access these directly.
-- Instead, use the SysVarI, SysVarR intrinsics to
-- access general system variables. See SysVarI,
-- SysVarR pages in this manual for more
-- information.
--- --
integer gpsubrec(65)
--- --

G-31 Database Format

Database Format

-- GX Sub-record definition ---------------------

-- Graphics Index information.

-- Holds start of and size of curve image in
-- graphical display lists (known as TGFs in
-- CV CADDS world). It is currently not
-- implemented and should be present but ignored.
-- Both fields should be equal to zero. Used in
-- both Nspline and Nsurface.

-- Use with GetSrI, ModSrI, and PutSrI intrinsics
-- 1) Access variables named below.
-- 2) Substitute 'GXsubrec' for 'ibuf'param.

-- integer GXsubrec(4)
-- integer4 CurveImageOffGX @ GXsubrec + 2
-- integer4 BCntCurveImageGX @ GXsubrec + 6

G-32 UPL Revision 6.0

Database Format

-- IU Sub-record definition ---------------------

-- Trim Bounds (Nspline) interpolation info.

-- Holds coordinates u & v of interpolation
-- points of the NSurface trim bounds (which is
-- an Nspline in U & V).
--
-- This subrecord is only present if the Nsurface
-- has been tri=ed ('t' flag in NS subrecord
-- is set to 1). It is #4 of 4 subrecords
-- representing the trimming Nspline.
-- (see NT subrecord for more information)
--
-- The number of interpolation points
-- will be:
-- m + d + 1
--
-- where d = degree of trimming Nspline or
-- m = # of control pnts in trimming Nspline
-- For Personal Designer Rev. 5, number of
-- interpolation points must equal the number of
-- control points in the trim boundaries.

-- Use with the GetSrR, ModSrR, PutSrR intrinsics
-- 1) Access knot values in 'IUsubrec'
-- 2) Substitute 'IUsubrec' for 'rbuf' param.
-- This is a variable length subrecord. You may
-- need to change the dimension of 'IUsubrec'
-- for your needs.

real IUsubrec(100)

G-33 Database Format

Database Format

-- LP Sub-record definition ---------------------

-- Plane data:
-- Center point, Normal vector, Boundary size.

-- Use with GetSrR, ModSrR, and PutSrR intrinsics
-- 1) Substitute LPsubrec for 'rbuf' parameter.

-- real LPsubrec(7)
-- coord CenterPtLP 9 LPsubrec + 2
-- coord NormVectLP @ LPsubrec + 14
-- real BoundSizeLP @ LPsubrec + 26

-- MA Sub-record definition ---------------------

-- Multiple View (MView) appearance information.
-- This is color and font appearance info gene-
-- rated by the CHANGE APPEARANCE INTERVAL command.
-- (Note: MView interval appearance information
-- is held in the AI subrecord) MA subrecords occur
-- on each entity which is put in an MView AND
-- selected in a CHANGE APPEARANCE command. One MA
-- subrecord occurs for each MView in which the
-- appearance is changed. Thus,there may be more
-- than one MA sub-record on an entity.
-- 'MVnumberMA' is the MView number in which the
-- appearance is changed. 'ColorFontMA' holds
-- the font in two consecutive bytes. The order of
-- these bytes may be implementation dependant. On
-- machines such as Intel and DEC MIPS, the font is
-- in low order byte and color is in the high order
-- byte. On Sun SPARC machines it is the opposite.
-- A value of zero in either byte means no
-- change: use font or color in MIB sub-record.

G-34 UPL Revision 6.0

Database Format

-- Use with GetSrI, ModSrI, and PutSrI intrinsics
-- 1) Access desired variables in 'masubrec'
-- 2) Substitute for the 'ibuf' parameter
--- -
integer MAsubrec(2)
integer MVNumberMA @ MAsubrec + 2
integer ColorFontMA @ MAsubrec + 4
--- -

--- -
-- 'mv' Sub-record definition --------------------- -
--- -
-- Multiple View (MView) Definition information.
-- (Note: lower-case mv)
-- This always occurs on Part Parameter Entity.
-- Holds MView number, rotation and translation
-- transformations, clipping rectangle, attribute
-- bit table and clipping status.
--
-- It is a variable length subrecord. For each
-- MView that is defined, 80 bytes of data are
-- added to the subrecord. A max of 64 MViews are
-- allowed. You may shorten 'mv-subrecl array
-- if you use less MViews. 'mv-subrec' is currently
-- dimensioned to the maximum size of 2560=
-- ((80 bytes * 64 views) / 2 bytes per integer).
-- You may wish to change this for your needs.
--
-- MView 1 always exists.
-- You will have to add declarations (as shown
-- below for MView 2 and MView 7). Note that MView
-- information is added to the subrecord in the
-- order in which MViews are CREATED. This is not
-- necessarily in sequence of the MV numbers,
-- although it may happen that way.
-- The ordering of the bits in the bit table
-- 'MVxAttrBitTab' may be implementation dependant.
--- ---
-- Use with GetSrI, ModSrI, and PutSrI intrinsics

G-35 Database Format

Database Format

-- 1) Access desired variables in 'mv-subrec'
-- 2) Substitute for the libuf' parameter
--
integer mv-subrec(2560)

-- offsets start at 2 for MV 1
integer4 MV1MVNumber @ mv-subrec + 2
real MV1TransformAr @ mv-subrec + 6
coord MV1ClipRectLL @ mv-subrec + 54
coord MV1ClipRectUR @ mv-subrec + 66
integer MV1AttrBitTab @ mv-subrec + 78
integer MV1ClipStatFlg @ mv-subrec + 80

-- offsets start at 82 for next defined MV
integer4 MV2MVNumber @ mv-subrec + 82
real MV2TransformAr @ mv-subrec + 86
coord MV2ClipRectLL @ mv-subrec + 134
coord MV2ClipRectUR @ mv-subrec + 146
integer MV2AttrBitTab @ mv-subrec + 158
integer MV2ClipStatFlg @ mv-subrec + 160

-- offsets start at 162 for next defined MV
integer4 MV7MVNumber @ mv-subrec + 162
real MV7TransformAr @ mv-subrec + 166
coord MV7ClipRectLL @ mv-subrec + 214
coord MV7ClipRectUR @ mv-subrec + 226
integer MV7AttrBitTab @ mv-subrec + 238
integer MV7ClipStatFlg @ mv-subrec + 240

-- offsets start at ? for next defined MV
--[where ? = ((order-MV-was-defined * 80) + 2)]
--integer4 MVxMVNumber @ mv-subrec + (? + 0)
--real MvxTransformAr @ mv-subrec + (? + 4)
--coor MvxClipRectLL @ mv-subrec + (? + 52)
--coord MvxClipRectUR @ mv-subrec + (? + 64)
--integer MvxAttrBitTab @ mv-subrec + (? + 76)
--integer MvxClipStatFlg @ mv-subrec + (? + 78)

G-36 UPL Revision 6.0

Database Format

-- MV Sub-record definition ---------------------

-- MView visibility information. This is a
-- bit-table flagging the MViews in which the
-- entity appears. It occurs on each entity
-- which is put in a multiple view.
-- MV is a variable length subrecord. For each
-- defined MView, there is one bit in the table.
-- The table is allocated 8 bits at a time.
-- MVsubrec is dimensioned here for all 64 bits.
-- You may wish to change this for your needs.
-- The ordering of the bits in the bit table
-- 'BitTableMV' may be implementation dependant.

-- Use with GetSrI, ModSrI, and PutSrI intrinsics
-- 1) Access desired variables in 'mv-subrec'
-- 2) Substitute for the libuf' parameter
-- Use UPL intrinsics GetBit & SetBit to
-- manipulate bit-tables.

integer MVsubrec(4)
integer BitTableMV @ MVsubrec + 2

G-37 Database Format

Database Format

-- NC Sub-record definition ---------------------

-- NURB Spline header information.

-- Contains parameters/flags about an NSPLINE.
-- Nspline degree (d) (1<d<=10)
-- Number polygon control points (1<M<=500)
-- Uniform flag (0=non-uniform,l=uniform)
-- Rational flag (0=non-rational, 1=rational)
-- Closed flag (0=open,l=closed)
-- Periodic flag (0=non-periodic,l=periodic)
-- Curve (0=general NURB, 1=line, 2=circle,
-- 3=ellipse, 4=parabola, 5=hyperbola)
-- Planar flag (0=non-planar, 1=planar)
-- Display flags (bit table)
-- Polygon display flags (bit-table:16)
-- Bit 15 is a high order bit (Intel byte order)
-- bit 15: polygon displayed
-- bit 14: direction mark (positive U)
-- bit 13: normal vector displayed
-- bit 12-0: (reserved)
-- Display quality (q). # of lines per segment
-- (2<=q<=20)
-- Interpolation points flag (I)
-- (O=points not saved,
-- 1=saved in XD subrecords end of entity;
-- see XD subrecord for more info.)

-- Use with GetSrI, ModSrI, and PutSrI intrinics
-- 1) Access variables named below.
-- 2) Substitute 'NCSubrec' for 'ibuf'param.

integer NCsubrec(11)

G-38 UPL Revision 6.0

Database Format

Integer DegreeNC @ Ncsubrec + 2
Integer NumCtrlPtsNC @ Ncsubrec + 4
Integer UniformFlagNC @ Ncsubrec + 6
Integer RationalFlagNC @ Ncsubrec + 8
Integer ClosedFlagNC @ Ncsubrec + 10
Integer PeriodicFlagNC @ Ncsubrec + 12
Integer SplineTypeNC @ Ncsubrec + 14
Integer PlanarFlagNC @ Ncsubrec + 16
Integer DisplayFlagNC @ Ncsubrec + 18
Integer DisplayQualNC @ Ncsubrec + 20
Integer InterPntsSavNC @ Ncsubrec + 22

G-39 Database Format

Database Format

-- NS Sub-record definition ---------------------

-- NURB Surface header information.

-- Contains parameters/flags about an Nsurface.
-- Nsurface degree in U (dU) (0<du<=10)
-- Nsurface degree in V (dv) (0<dv<=10)
-- Number poly. control pnts in U (mu) (1<mu<=500)
-- Number poly. control pnts in V (mv) (I<mv<=500)
-- Uniform in U flag (0=non-uniform,l=uniform)
-- Uniform in V flag (0=non-uniform,l=uniform)
-- Rational flag (0=non-rational, 1=rational)
-- Closed in U flag (0=open,l=closed)
-- Closed in V flag (0=open,l=closed)
-- Periodic in U flag(0=non-periodic,l=periodic)
-- Periodic in V flag(0=non-periodic,l=periodic)
-- Surface (0=general NURB, 1=plane,
-- 2=right circle, 3= cone, 4=sphere
-- 5=torus, 6=surface of revolution,
-- 7=tabulated cylinder,
-- 8=ruled surface
-- 9=general quadratic surface)
-- Planar flag (0=non-planar, 1=planar)
-- Display flags (bit table)
-- Bit 15 is a high order bit (Intel byte order)
-- bit 15: polygon displayed
-- bit 14: direction mark (positive U)
-- bit 13: mesh displayed
-- (must be set to 1 to display surface)
-- bit 12: normal vector displayed
-- bit 11-0: (reserved)
-- Display quality (q). # of lines per segment
-- (1<q<=20)
-- Number of mesh lines in U (ku) (1<ku<20)
-- Number of mesh lines in V (kv) (1<kv<20)
-- Number of trim bounds in surface (t)
-- (see TB subrecord for more info.)
-- Outer boundary trimmed flag (B)
-- (0=outer bound same as surface edges,

G-40 UPL Revision 6.0

Database Format

-- 1=outer bound is trimmed and saved)
 (see TB subrecord for more info.)
-- Interpolation points flag (I)
-- (0=points not saved,
-- 1=saved in XD subrecords end of entity;
-- see XD subrecord for more info.)

Use with GetSrI, ModSrI, and PutSrI intrinsics
 1) Access variables named below.
 2) Substitute 'NSsubrec' for 'ibuflparam.

integer NSsubrec(20)

integer DegreesInUNS @ Nssubrec + 2
integer DegreesInVNS @ Nssubrec + 4
integer NumCtrlPtsInUNS @ Nssubrec + 6
integer NumCtrlPtsInVNS @ Nssubrec + 8
integer UniformInUFlagNS @ Nssubrec + 10
integer UniformInVFlagNS @ Nssubrec + 12
integer RationalFlagNS @ Nssubrec + 14
integer ClosedInUFlagNS @ Nssubrec + 16
integer ClosedInVFlagNS @ Nssubrec + 18
integer PeriodicInUFlagNS @ Nssubrec + 20
integer PeriodicInVFlagNS @ Nssubrec + 22
integer SurfaceTypeNS @ Nssubrec + 24
integer PlanarFlagNS @ Nssubrec + 26
integer DisplayFlagNS @ Nssubrec + 28
integer DisplayQualNS @ Nssubrec + 30
integer NumMeshInUNS @ Nssubrec + 32
integer NumMeshInVNS @ Nssubrec + 34
integer NumTrimBndsNS @ Nssubrec + 36
integer OutBndTrimPlagNS @ Nssubrec + 38
integer InterPntsSavNS @ Nssubrec + 40

G-41 Database Format

Database Format

-- NT Sub-record definition ---------------------

-- Nsurface Trim Boundary information.

-- This subrecord acts as the header for
-- Nsurface Trim Boundaries. It holds the curve
-- degree, count of polygon points, and count
-- of critical points in the trimming boundary.
-- The trimming boundary is a group of 2-D
-- (in U & V) Nsplines which form a closed loop.

-- Nsurface trim bounds are present if the
-- surface has been trimmed by commands such as
-- CHANGE NSURFACE TRIM or CHANGE NSURFACE HOLE.
--
-- If the Nsurface has not been trimmed, the 't'
-- flag in the NS subrecord will be set to 0 and
-- the trim bound subrecords will not be present.
--
-- If the Nsurface has been trimmed, the 't' flag
-- in the NS subrecord is set to 1 and a set of
-- 4 subrecords (NT, PU, TB, IU) will be present
-- for each trim boundary effecting the surface.
--
-- If all trim boundaries lay inside the
-- outer boundary of the Nsurface, the 'B' flag
-- in the NS subrecord is set to 0. There will
-- be one set of trim bound subrecords for each
-- inner trim boundary (holes). This is the case
-- for commands like CHANGE NSURF HOLE.
--
-- Commands like CHANGE NSURF TRIM will often
-- make a trim boundary cross an outer bound
-- such that they form a closed loop. This
-- closed loop is stored as the new outer
-- boundary for the Nsurface:
-- The 'B' flag in the NS subrecord is set to 1.
-- The first set of trim boundary subrecords
-- represents the (new trimmed) outer boundaries

G-42 UPL Revision 6.0

Database Format

-- of the Nsurface. Subsequent sets of trim
-- boundary subrecords represent any 'holes'
-- within the new bounds.
-- Note: the trim boundary must form a
-- closed loop with all outer boundaries it
-- crosses and, it may not enclose more than
-- one portion of the surface.
-- That is, the enclosed portion of the outer
-- boundary combined with the inner intersecting
-- portion of the trim boundary must completely
-- surround (only) one piece of the surface.
--
-- If the trim boundary cannot form a closed
-- loop with outer boundary, the Nsurface will
-- be split into 2 or more Nsurfaces.
--
-- For Personal Designer Rev. 5, number of
-- control points in the trim boundaries
-- must equal the number of interpolation points.

-- Use with GetSrI, ModSrI, and PutSrI intrinsics
-- 1) Access variables named below.
-- 2) Substitute 'NTsubrec' for 'ibuf'param.

integer NTsubrec(3)

integer NsplineDegNT @ NTsubrec + 2
integer NumPolyPntsNT @ NTsubrec + 4
integer NumCritPntsNT @ NTsubrec + 6

G-43 Database Format

Database Format

-- NV Sub-record definition ---------------------

-- NURB Knot Vector information.

-- Holds knot vector for NURB Spline and Surface.
-- This subrecord is only present if the Spline
-- or Surface is non-rational. The Uniform flag
-- in the NC or NV subrecord must be set to 0.
--
-- Nsplines:
-- Holds 'n' real values giving the knots for
-- the Nspline.
-- Nsurfaces:
-- There will be one NV subrecord to hold the
-- knot vector in the U direction followed by
-- another NV subrecord to hold the knot vector
-- in the V direction. Both knot vectors must be
-- present even when the surface is uniform in
-- U and V direction.
--
-- In both cases the number of knot values (n)
-- will be: n = m + d + 1
--
-- where d = degree of curve (d) or
-- degree of surface (du) or (dv).
-- m = # of control pnts of curve (m) or
-- of the surface (mu) or (mv).

-- Use with the GetSrR, ModSrR, PutSrR intrinsics
-- 1) Access knot values in 'NVsubrec'
-- 2) Substitute 'NVsubrec' for 'rbuf' param.
-- This is a variable length subrecord. You may
-- need to change the dimension of 'NVsubrec'
-- for your needs.

real NVsubrec(100)

G-44 UPL Revision 6.0

Database Format

--
-- PC Sub-record definition --------------------
--
-- Bezier curve and surface parameters.
--
-- NOTE: PC sub-record is different for
-- Curves vs Surfaces. Use appropriate one.
--
-- For Bezier curves (PC sub-record):
-- Number of poles (2 <= np <= 8)
-- Number of vert in curve image (2<=nv<=51)
-- Polygon display flags (bit-table:16)
-- Bit 15 is a high order bit (Intel byte order)
-- bit 15 : polygon visible
-- bit 14-0: (reserved)
-- Next is XN sub-rec. holding 'np' pole coords
-- Next is WD sub-rec. holding 'nv' image coords
-- Last is TX sub-rec. described below.
--
-- For Bezier surfaces (PC sub-record):
-- Number of poles in U direction (NU: 2<=NU<=8)
-- Number vertices in curve image(nv: 2<=nv<=51)
-- Polygon display flags (bit-table:16)
-- bit 15: polygon displayed
-- bit 14: direction mark displayed (positive U)
-- bit 13: mesh displayed
-- bit 12: normal vector displayed
-- bit 11-0: (reserved)
-- Number of poles in V direction (NV: 2<=NV<=8)
-- Mesh in U direction (MU)
-- Mesh in V direction (MV)
-- Next are NV XN sub-rec.s holding NU pole coords
-- Next are MU+MV WD sub-rec.s holding NV coords
-- Last is TX sub-rec. described below.
--
-- Use with GetSrI, ModSrI, and PutSrI intrinsics
-- 1) Access variables named below.
-- 2) Substitute 'PCSubrecC' (curve) or
-- or 'PCsubrecS' (surface) the 'ibuf'param.

G-45 Database Format

Database Format

-- A special version of TX subrecord is
-- used in curves and surfaces for polygon
-- and curve/surface minimum and maximums.
-- Access appropriate variables listed
-- below and substitute 'CurveExtTX' or
-- 'SurfExtTX' for the 'textstring'
-- parameter in calls to RsubrecTX,
-- MsubrecTX, and WsubrecTX.
--
integer PCsubrecC(3)

integer CNumPolesPC @ PCsubrecC + 2
integer CNumVertsPC @ PCsubrecC + 4
integer CDispFlagPC @ PCsubrecC + 6

string CurveExtTX:48

coord CPolyMinTX @ CurveExtTX + 4
coord CPolyMaxTX @ CurveExtTX + 16
coord CMinPointTX @ CurveExtTX + 28
coord CMaxPointTX @ CurveExtTX + 40

-- Surface version -----------------------------

integer PCsubrecS(6)

integer SNumPolesUPC @ PCsubrecS + 2
integer SnumVertsPC @ PCsubrecS + 4
integer SdispFlagPC @ PCsubrecS + 6
integer SNumPolesVPC @ PCsubrecS + 8
integer SNumMeshUPC @ PCsubrecS + 10
integer SNumMeshVPC @ PCsubrecS + 12

string SurfExtTX:48

coord SpolyMinTX @ SurfExtTX + 4
coord SpolyMaxTX @ SurfExtTX + 16
coord SminPointTX @ SurfExtTX + 28
coord SmaxPointTX @ SurfExtTX + 40

G-46 UPL Revision 6.0

Database Format

--
-- PH Sub-record definition ----------------------
--
-- Polygon control points.
-- The homogenous coordinates of the control
-- points of the Nspline or Nsurface.
--
-- Each control point is represented by 4 real
-- values for the x, y, z, and h coordinates,
-- respectively.
-- Nsplines: one PH subrecord of 'm' points.
-- Nsurfaces: 'mv' PH subrecords of 'mu' points.
--
-- Use with the GetSrR, ModSrR, PutSrR intrinsics
-- 1) Access homogeneous coordinates using
-- 'PHsubrec' array.
-- 2) Substitute 'PHsubrec' for 'rbuf' param.
-- This is a variable length record. There
-- is no theoretical limit on control points,
-- however, the system may limit you to 500. We
-- use 100 points here. You may need to adjust the
-- size of 'PHsubrec' for your needs.
--
real PHsubrec(100)
--

G-47 Database Format

Database Format

-- PU Sub-record definition ---------------------

-- Trim Bounds (Nspline) Polygon information.

-- Holds controlling polygon points for NSurface
-- trim bounds (which is an Nspline in U & V).
--
-- For each controlling polygon point, this
-- subrecord holds the homogeneous coordinates:
-- (u, v, h). The number of polygon points is
-- contained in the NT subrecord.
-- (see NT subrecord for more information)
--
-- This subrecord is only present if the Nsurface
-- has been trimmed ('t' flag in NS subrecord
-- is set to 1). It is #2 of 4 subrecords
-- representing the tri=ing Nspline.
-- (see NS subrecord for more information)
--

-- Use with the GetSrR, ModSrR, PutSrR intrinsics
-- 1) Access knot values in 'PUsubrec'
-- 2) Substitute 'PUsubrec' for 'rbuf' param.
-- This is a variable length subrecord. You may
-- need to change the dimension of 'PUsubrec'
-- for your needs.

real PUsubrec(100)

G-48 UPL Revision 6.0

Database Format

--
-- TB Sub-record definition ---------------------

-- Trim Bounds (Nspline) Knot Vector information.

Holds knot vector for NSurface trim bounds
(which is an Nspline in U & V). A TB subrecord
may also be used to hold the knot vector for
critical points in the trimming Nspline.

This subrecord is only present if the Nsurface
has been tri=ed ('t' flag in NS subrecord
is set to 1). It is #3 of 4 subrecords
representing the trimming Nspline.
(see NT subrecord for more information)

The number of knot values (n)
will be:
 n = m + d + 1

where d = degree of trimming Nspline or
 m = # of control pnts in trimming
 Nspline

If used to hold the critical points it will
hold 'lc' real values for the critical point
knot vector.

Use with the GetSrR, ModSrR, PutSrR intrinsics
1) Access knot values in 'TBsubrec'
2) Substitute 'TBsubrec' for 'rbuf' param.
This is a variable length subrecord. You may
need to change the dimension of 'TBsubrec'
for your needs.

real TBsubrec(100)

G-49 Database Format

Database Format

-- TG Sub-record definition ---------------------

-- Tag Fields.
-- Non-graphical data. Multiple fields.
-- one 4 byte tag number followed by variable
-- length tag fields. Each field consists of
-- a 2-byte integer byte-count followed by data.

-- NOTE: It is far easier and highly recommended
-- that you use the following UPL intrinsics
-- INSTEAD of directly accessing tag fields:
-- TagMib, MibTag, SetTagField, GetTagField.
-- If you must, use with GetSrI, ModSrI, and
-- PutSrI intrinsics
-- 1) Access variables named below.
-- 2) Substitute 'TGsubrec' for the 'ibuf'
-- parameter.

integer TGsubrec(1000)

integer4 TagNumTG @ Tgsubrec + 2
integer TagFieldlTG @ Tgsubrec + 6
integer TagField1Data @ Tgsubrec + 8
--integer TagField2TG @ Tgsubrec + ??
--integer TagField2Data @ Tgsubrec + ??
--etc

G-50 UPL Revision 6.0

Database Format

-- 'TI' Sub-record definition - (3 Axis) --------

-- 3-Axis Toolpath integer information.

integer VLimitInXTI3 @ TI3axis + 2
integer VLimitInYTI3 @ TI3axis + 4
integer VLimitInZTI3 @ TI3axis + 6
integer ToolTypeTI3 @ TI3axis + 8
-- (0=ball, 1=flat,2=flat corner)
integer NumCutPInsTI3 @ TI3axis + 10
integer CutPlaneTI3 @ TI3axis + 12
-- (0=X, 1=Y, 2=Z,3=other)
integer VarStepFlgTI3 @ TI3axis + 14
-- (0=off, 1=on)

integer CrossCutFlgTI3 @ TI3axis + 16
integer SpecialModeTI3 @ TI3axis + 18
-- (1=recut, 2=IntAuto, 3=IntSeries, 4=Proj)
integer ToolTypeRecTI3 @ TI3axis + 20
integer CutDirectTI3 @ TI3axis + 22
-- (0=zigzag, 1=unidirl, 2=unidir2)
integer RoughmodeTI3 @ TI3axis + 24
-- (0=constant, 1=Zrough, 2=Variable)
integer CompFlgTI3 @ TI3axis + 26
-- (0=off, 1=on)
integer AutoZFlgTI3 @ TI3axis + 28
-- (0=off, 1=on)
integer StopOnSurfTI3 @ TI3axis + 30
integer StopOnRestrTI3 @ TI3axis + 32
integer MagPosTI3 @ TI3axis + 34
integer OptRecInAutoTI3 @ TI3axis + 36
integer AutoZTypeTI3 @ TI3axis + 38
-- (0=RetAuto, 1=RetAbs, 2=RetInc)
integer BorderSmoothTI3 @ TI3axis + 40
-- (always 1)
integer SeparatesTPTI3 @ TI3axis + 42
-- (for mapping)
integer WarningLevelTI3 @ TI3axis + 44
-- (for twisted surfaces)
integer AStockPropFlgTI3 @ TI3axis + 46

G-51 Database Format

Database Format

Integer NumberAxesTI3 @ TI3axis + 62
-- (3, 4, or 5)
integer DirectIn4or5TI3 @ TI3axis + 64
-- (0 or 1)

Use with GetSrI, ModSrI, and PutSrI intrinsics
1) Access integer variables in 'TI3axis'
2) Substitute for the 'ibuf' parameter

integer TI3axis(32)

G-52 UPL Revision 6.0

Database Format

-- 'TI' Sub-record definition - (2 1/2 Axis) ----

-- 2 1/2 Axis Pocket Toolpath integer info.

integer TpathPocketType @ TI2Pockt + 2 -- (1)
integer CutTypeTI2t1 @ TI2Pockt + 4
-- (0=spiral,
-- 1=Zigzag,
-- 2=Profile Every,
-- 3=Profile Last,
-- 20=Spiral + Profile Every,
-- 21=Zigzag + Profile Every,
-- 30=Spiral + Profile Every,
-- 31=Zigzag + Profile Last)
integer CutDirectTI2t1 @ TI2Pockt + 6
-- (0=CLW, l=CCLW)
integer ToolTypeTI2t1 @ TI2Pockt + 8
-- (0=ball mill, 1=flat mill)
integer CoolantFlgTI2t1 @ TI2Pockt + 10
-- (0=off, 1=on)
integer SpiralDirTI2t1 @ TI2Pockt + 12
-- (0=in, 1=out)
integer RecutTI2t1 @ TI2Pockt + 14
-- (O=off, 1=recut, 2=Lrecut, 3=Crecut)
integer ProfileApprTI2t1 @ TI2Pockt + 16
-- (0=Spiral, 1=Perpendicular)
integer ToolChangeTI2t1 @ TI2Pockt + 18
-- (0=no, 1=Yes)
integer RoughExceptTI2t1 @ TI2Pockt + 20
-- (0=off, 1=rough, 2=rough/except)
integer ThickTI2t1 @ TI2Pockt + 22
-- (0=no, 1=yes)
integer StepOverTI2t1 @ TI2Pockt + 24
-- (0=40% of tool diam. 1=step, 2=scallop)
integer CutterCompTI2t1 @ TI2Pockt + 26
-- (0=off, 1=right, 2=off)
integer CurrentCPLTI2t1 @ TI2Pockt + 28
integer MagPosTI2t1 @ TI2Pockt + 34

G-53 Database Format

Database Format

-- Use with GetSrI, ModSrI, and PutSrI intrinsics
-- 1) Access integer variables in 'TI2Pockt'
-- 2) Substitute for the 'ibuf' parameter

integer TI2Pockt(32)

-- 'TI' Sub-record definition - (2 1/2 Axis) ---

-- 2 1/2 Axis Mcycle Toolpath integer info.

integer TPathMcycleType @ TI2Mcycl + 2 --(2)
integer PropertyTI2t2 @ TI2Mcycl + 4
-- (0=off, 1=on)
integer ToolTypeTI2t2 @ TI2Mcycl + 8
-- (3=drill, 4=tap)
integer CoolantFlgTI2t2 @ TI2Mcycl + 10
-- (0=off, 1=on)
integer StartPointTI2t2 @ TI2Mcycl + 16
-- (0=no, 1=Yes)
integer ToolChangeTI2t2 @ TI2Mcycl + 18
-- (0=no, 1=Yes)
integer GCodeTI2t2 @ TI2Mcycl + 20
-- (0=off, 1=rough, 2=rough/except)
integer ZTypeTI2t2 @ TI2Mcycl + 22
-- (0=ZDepth, 1=ZAbs, 3=ZIncr, 3=ZDiam)
integer DwellTimeTI2t2 @ TI2Mcycl + 24
integer CurrentCPLTI2t2 @ TI2Mcycl + 28
integer MagPosTI2t2 @ TI2Mcycl + 34

-- Use with GetSrI, ModSrI, and PutSrI intrinsics
-- 1) Access integer variables in 'TI2Mcycl'
-- 2) Substitute for the 'ibuf' parameter

integer TI2Mcycl(32)

G-54 UPL Revision 6.0

Database Format

-- 'TI' Sub-record definition - (2 1/2 Axis) ----

-- 2 1/2 Axis Profile Contour integer info.

integer TPathPContType @ TI2PCont + 2 --(3)
integer ClosedValTI2t3 @ TI2PCont + 4
-- (0=Between, 1=Complete)
integer CutDirectTI2t3 @ TI2PCont + 6
-- (0=CLW, 1=CCLW)
integer ToolTypeTI2t3 @ TI2PCont + 8
-- (0=ball mill, 1=flat mill)
integer CoolantFlgTI2t3 @ TI2PCont + 10
-- (0=off, 1=on)
integer ProfileApprTI2t3 @ TI2PCont + 16
-- (0=spiral, 1=perpendicular)
integer ToolChangeTI2t3 @ TI2PCont + 18
-- (0=no, 1=yes)
integer AvoidFlgTI2t3 @ TI2PCont + 20
-- (0=no, I=yes)
integer ThickFlgTI2t3 @ TI2PCont + 22
-- (0=no, 1=Yes)
integer CutterCompTI2t3 @ TI2PCont + 26
-- (0=off, 1=right, 2=left)
integer CurrentCPLTI2t3 @ TI2PCont + 28
integer MagPosTI2t3 @ TI2PCont + 34

-- Use with GetSrI, ModSrI, and PutSrI intrinsics
-- 1) Access integer variables in 'TI2PCont'
-- 2) Substitute for the 'ibuf' parameter

integer TI2PCont(32)

G-55 Database Format

Database Format

--
-- 'TI' Sub-record definition - (2 1/2 Axis) ---
--
-- 2 1/2 Axis Point to Point integer info.
--
integer TPathPnt2PntType @ TI2PTP + 2 --(4)
--
integer ToolTypeTI2t4 @ TI2PTP + 8
-- (0=ball mill, 1=flat mill)
integer CoolantFlgTI2t4 @ TI2PTP + 10
-- (0=off, 1=on)
--
integer CutterCompTI2t4 @ TI2PTP + 26
-- (0=off, 1=right, 2=left)
integer CurrentCPLTI2t4 @ TI2PTP + 28
integer MagPosTI2t4 @ TI2PTP + 34

-- Use with GetSrI, ModSrI, and PutSrI intrinsics
-- 1) Access integer variables in 'TI2PTP'
-- 2) Substitute for the 'ibuf' parameter

integer TI2PTP(32)

G-56 UPL Revision 6.0

Database Format

--
-- 'TI' Sub-record definition - (2 1/2 Axis) ---
--
-- 2 1/2 Axis Thread Toolpath integer info.
--
integer TPathThreadType @ TI2Thred + 2 -- (7)
integer ThreadTypeTI2t7 @ TI2Thred + 4
-- (0=OD, 1=ID)
integer ApprTypeTI2t7 @ TI2Thred + 6
-- (0=Straight, 1=XFirst, 2=YFirst)
integer ToolTypeTI2t7 @ TI2Thred + 8
-- (11=threading)
integer CoolantFlgTI2t7 @ TI2Thred + 10
-- (0=off, 1=on)
integer CycleTI2t7 @ TI2Thred + 12
-- (0=G33, 1=G76)
integer NumberCutsTI2t7 @ TI2Thred + 14
integer NumStrPassTI2t7 @ TI2Thred + 16
integer ToolChangeTI2t7 @ TI2Thred + 18
-- (0=none, 1=tool change,
-- 11=tool change & intermediate)
integer NumOptPassTI2t7 @ TI2Thred + 20
integer CutSideTI2t7 @ TI2Thred + 22
-- (0=above center, 1=below center)
--
integer CurrentCPLTI2t7 @ TI2Thred + 28
--
integer MagPosTI2t7 @ TI2Thred + 34
--
integer UnitsTI2t7 @ TI2Thred + 36
-- (0=inches, 1=metric)

-- Use with GetSrI, ModSrI, and PutSrI intrinsics
-- 1) Access integer variables in ITI2Thred'
-- 2) Substitute for the 'ibuf' parameter

integer TI2Thred(32)

G-57 Database Format

Database Format

--
-- 'TI' Sub-record definition - (2 1/2 Axis) ---
--
-- 2 1/2 Axis Lathe Toolpath integer info.
--
integer TPathLatheType @ TI2Lathe + 2 -- (8)
integer LatheTypeTI2t8 @ TI2Lathe + 4
-- (0=OD, 1=ID, 2=Face, 3=Profile Last,
-- 10=OD groove, 11=ID groove, 12=face groove,
-- 30=OD Undercut, 31=ID Undercut)
integer ApprTypeTI2t8 @ TI2Lathe + 6
-- (0=straight, 1=XFirst, 2=YFirst)
integer ToolTypeTI2t8 @ TI2Lathe + 8
-- (5=turn triangle, 6=face triangle
-- 7=diamond, 8=square,
-- 9=square w/radius, 10=button)
integer CoolantFlgTI2t8 @ TI2Lathe + 10
-- (0=off, 1=on)
integer OffsetTI2t8 @ TI2Lathe + 12
-- (0=radius, 1=Theoretical sharp corner)
integer ProfileTI2t8 @ TI2Lathe + 14
-- (0=off, 1=on, 2=only)
integer CSSTI2t8 @ TI2Lathe + 16
-- (0=off, 1=on)
integer ToolChangeTI2t8 @ TI2Lathe + 18
-- (0=none, 1=toolchange,
-- 2=toolchange & intermediate)
integer CutDirectionTI2t8 @ TI2Lathe + 20
-- (1=CRight, 2=CLeft, 3=CUp, 4=CDown)
integer CutSideTI2t8 @ TI2Lathe + 22
-- (0=above center, 1=below center)
integer CurrentCPLTI2t8 @ TI2Lathe + 28
integer MagPosTI2t8 @ TI2Lathe + 34

-- Use with GetSrI, ModSrI, and PutSrI intrinsics
-- 1) Access integer variables in 'TI2Lathe'
-- 2) Substitute for the 'ibuf' parameter

integer TI2Lathe(32)

G-58 UPL Revision 6.0

Database Format

-- 'TI' Sub-record definition - (2 1/2 Axis) ---

-- 2 1/2 Axis Lcycle Toolpath integer info.

integer TPathLcycleType @ TI2Lcycl + 2 --(9)
integer ToolTypeTI2t9 @ TI2Lcycl + 8
-- (12=drill, 13=tap)
integer CoolantFlgTI2t9 @ TI2Lcycl + 10
-- (0=off, I=on)
integer ToolChangeTI2t9 @ TI2Lcycl + 18
-- (0=no, 1=Yes)
integer GCodeTI2t9 @ TI2Lcycl + 20
-- (0=off, 1=rough, 2=rough/except)
integer ZTypeTI2t9 @ TI2Lcycl + 22
-- (0=ZDepth, 1=ZAbs, 3=ZIncr, 3=ZDiam)
integer DwellTimeTI2t9 @ TI2Lcycl + 24
integer CurrentCPLTI2t9 @ TI2Lcycl + 28
integer MagPosTI2t9 @ TI2Lcycl + 34

-- Use with GetSrI, ModSrI, and PutSrI intrinsics
-- 1) Access integer variables in 'TI2Lcycl'
-- 2) Substitute for the 'ibuf' parameter

integer TI2Lcycl(32)

G-59 Database Format

Database Format

-- 'TI' Sub-record definition - (2 1/2 Axis) ---

-- 2 1/2 Axis Lathe Point to Point Toolpath
-- integer info.

integer TPathLPTPType @ TI2LPTP + 2 --(10)
integer ToolTypeTI2t10 @ TI2LPTP + 8
-- (5=turn triangle, 6=face triangle
-- 7=diamond, 8=square, 9=square w/radius,
-- 10=button)
integer CoolantFlgTI2t10 @ TI2LPTP + 10
-- (0=off, l=on)
integer OffsetTI2t10 @ TI2LPTP + 12
-- (0=Radius, 1=Theoritcal sharp corner)
integer CurrentCPLTI2t10 @ TI2LPTP + 28
integer MagPosTI2t10 @ TI2LPTP + 34

-- Use with GetSrI, ModSrI, and PutSrI intrinsics
-- 1) Access integer variables in 'TI2LPTP'
-- 2) Substitute for the 'ibuf' parameter

integer TI2LPTP(32)

G-60 UPL Revision 6.0

Database Format

-- 'TR' Sub-record definition - (3 Axis) ----

-- 3 Axis Toolpath real information.

coord VMinTR3 @ TR3axis + 2
coord VMaxTR3 @ TR3axis + 14
real ToolDiameterTR3 @ TR3axis + 26
real CornerRadiusTR3 @ TR3axis + 30
real SpindleTR3 @ TR3axis + 34
real FeedrateRapidTR3 @ TR3axis + 38 --(5000.0)
real FeedrateWorkTR3 @ TR3axis + 42
real FeedratePlunTR3 @ TR3axis + 46
real ToleranceTR3 @ TR3axis + 50
real CollisionTolTR3 @ TR3axis + 54 --(0.0)
real StepOverTR3 @ TR3axis + 58
real ScallopHghtTR3 @ TR3axis + 62
real StockTR3 @ TR3axis + 66
real CuttingAngTR3 @ TR3axis + 70
real PrevDiamTR3 @ TR3axis + 74
real PrevCornerRadTR3 @ TR3axis + 78
real MaximumDepthTR3 @ TR3axis + 82
real RecutAngleTR3 @ TR3axis + 86 --(MinAng)
real CrossCutAngleTR3 @ TR3axis + 90 --(45.0)
real AbsZRetrctValTR3 @ TR3axis + 94
real IncZRetrctValTR3 @ TR3axis + 98
real RetractRatioTR3 @ TR3axis + 102
real MinSetOverTR3 @ TR3axis + 106 --(VarMin)
real ZoomValueMapTR3 @ TR3axis + 110 --(0<ZV<l)

-- Use with GetSrR, ModSrR, and PutSrR intrinsics
-- 1) Access real variables in 'TR3axis'
-- 2) Substitute for the Irbuf' parameter

real TR3axis(28)

G-61 Database Format

Database Format

-- 'TR' Sub-record definition - (2 1/2 Axis) ----

-- 2 1/2 Axis Pocket Toolpath real information.

coord CPLXaxisVctTR2t1 @ TR2Pockt + 2
coord CPLYaxisVctTR2t1 @ TR2Pockt + 14
real ToolDiamTR2t1 @ TR2Pockt + 26
--
real SpeedTR2t1 @ TR2Pockt + 34
--
real FeedTR2t1 @ TR2Pockt + 42
--
real ToleranceTR2t1 @ TR2Pockt + 50
real RoughValueTR2t1 @ TR2Pockt + 54
real StepOverTR2t1 @ TR2Pockt + 58
real ScallopHgtTR2t1 @ TR2Pockt + 62
real StockTR2t1 @ TR2Pockt + 66
real ZiZagAngleTR2t1 @ TR2Pockt + 70
real PocketLevelTR2t1 @ TR2Pockt + 74
real ApproachTR2t1 @ TR2Pockt + 78
real CutDepthTR2t1 @ TR2Pockt + 82
real ZwinTR2t1 @ TR2Pockt + 86 --(MinAng)
real ZLevelTR2t1 @ TR2Pockt + 90 --(45.0)
real ThicknessTR2t1 @ TR2Pockt + 94
real PlungeAngleTR2t1 @ TR2Pockt + 98
real MaxZDTR2t1 @ TR2Pockt + 102

-- Use with GetSrR, ModSrR, and PutSrR intrinsics
-- 1) Access real variables in 'TR2Pockt'
-- 2) Substitute for the 'rbuf' parameter

real TR2Pockt(28)

G-62 UPL Revision 6.0

Database Format

-- 'TR' Sub-record definition - (2 1/2 Axis) ----

-- 2 1/2 Axis Mcycle Toolpath real information.

coord CPLXaxisVctTR2t1 @ TR2mcycl + 2
coord CPLYaxisVctTR2t1 @ TR2Mcycl + 14
real ToolDiamTR2t1 @ TR2Mcycl + 26
real ZDepthTR2t1 @ TR2Mcycl + 30
real SpeedTR2t1 @ TR2Mcycl + 34
--
real FeedTR2t1 @ TR2Mcycl + 42
real StartXTR2t1 @ TR2Mcycl + 46
real StartYTR2t1 @ TR2Mcycl + 50
real StartZTR2t1 @ TR2Mcycl + 54
--
real AvoidDistTR2t1 @ TR2Mcycl + 62
real CutInDistTR2t1 @ TR2Mcycl + 66
real ZDiameterTR2t1 @ TR2Mcycl + 70
real XDepthTR2t1 @ TR2Mcycl + 74
real RetrApprTR2t1 @ TR2Mcycl + 78
real DMinTR2t1 @ TR2Mcycl + 82
real DmaxTR2t1 @ TR2Mcycl + 86
real ZLevelTR2t1 @ TR2Mcycl + 90
real ToolTipAngTR2t1 @ TR2Mcycl + 94
real HoleDepthTR2t1 @ TR2Mcycl + 98
real ToolChangeXTR2t1 @ TR2Mcycl + 102
real ToolChangeYTR2t1 @ TR2Mcycl + 106
real ToolChangeZTR2t1 @ TR2Mcycl + 110

-- Use with GetSrR, ModSrR, and PutSrR intrinsics
-- 1) Access real variables in 'TR2Pockt'
-- 2) Substitute for the Irbuf' parameter

real TR2Mcycl(28)

G-63 Database Format

Database Format

-- 'TR' Sub-record definition - (2 1/2 Axis) ----

-- 2 1/2 Axis Profile Contour Toolpath real info.

coord CPLXaxisVctTR2t3 @ TR2PCont + 2
coord CPLYaxisVctTR2t3 @ TR2PCont + 14
real ToolIDiamTR2t3 @ TR2Pcont + 26
--
real SpeedTR2t3 @ TR2Pcont + 34
--
real FeedTR2t3 @ TR2Pcont + 42
--
real ToleranceTR2t3 @ TR2Pcont + 50
--
real ZAvoidTR2t3 @ TR2Pcont + 62
real StockTR2t3 @ TR2Pcont + 66
--
real ProfZLevelTR2t3 @ TR2Pcont + 74
real RetrApprTR2t3 @ TR2Pcont + 78
real CutDepthTR2t3 @ TR2Pcont + 82
real ZwinTR2t3 @ TR2Pcont + 86 --(MinAng)
real ZLevelTR2t3 @ TR2Pcont + 90 --(45.0)
real ThicknessTR2t3 @ TR2Pcont + 94
real MaxDTR2t3 @ TR2Pcont + 102

-- Use with GetSrR, ModSrR, and PutSrR intrinsics
-- 1) Access real variables in 'TR2PCont'
-- 2) Substitute for the 'rbuf' parameter

real TR2PCont(28)

G-64 UPL Revision 6.0

Database Format

-- 'TR' Sub-record definition - (2 1/2 Axis) ----

-- 2 1/2 Axis Profile Point to Point Toolpath
-- real information.

coord CPLXaxisVctTR2t4 @ TR2PPTP + 2
coord CPLYaxisVctTR2t4 @ TR2PPTP + 14
real ToolDiamTR2t4 @ TR2PPTP + 26
--
real SpeedTR2t4 @ TR2PPTP + 34
--
real FeedTR2t4 @ TR2PPTP + 42
--
real ToleranceTR2t4 @ TR2PPTP + 50
--
real ProfZ1evelTR2t4 @ TR2PPTP + 74
real RetrApprTR2t4 @ TR2PPTP + 78

-- Use with GetSrR, ModSrR, and PutSrR intrinsics
-- 1) Access real variables in 'TR2PPTP'
-- 2) Substitute for the 'rbuf' parameter

real TR2PPTP(28)

G-65 Database Format

Database Format

-- 'TR' Sub-record definition - (2 1/2 Axis) ----

-- 2 1/2 Axis Thread Toolpath real information.

coord CPLXaxisVctTR2t7 @ TR2Thred + 2
coord CPLYaxisVctTR2t7 @ TR2Thred + 14
real ToolWidthTR2t7 @ TR2Thred + 26
real SpeedTR2t7 @ TR2Thred + 34
real FeedTR2t7 @ TR2Thred + 42
real ToleranceTR2t7 @ TR2Thred + 50
real PitchTR2t7 @ TR2Thred + 54
real MaxCutDepthTR2t7 @ TR2Thred + 58
real ThreadDepthTR2t7 @ TR2Thred + 62
real TaperTR2t7 @ TR2Thred + 66
real RetractTR2t7 @ TR2Thred + 78
real ApprAngleTR2t7 @ TR2Thred + 82
real RetrAngleTR2t7 @ TR2Thred + 86
real ApprOffsetTR2t7 @ TR2Thred + 90
real RetrOffsetTR2t7 @ TR2Thred + 94
real XGaugeTR2t7 @ TR2Thred + 102
real YGaugeTR2t7 @ TR2Thred + 106

-- Use with GetSrR, ModSrR, and PutSrR intrinsics
-- 1) Access real variables in 'TR2Thred'
-- 2) Substitute for the 'rbuf' parameter

real TR2Thred(28)

G-66 UPL Revision 6.0

Database Format

-- 'TR' Sub-record definition - (2 1/2 Axis) ----

-- 2 1/2 Axis Lathe Toolpath real information.

coord CPLXaxisVctTR2t8 @ TR2Lathe + 2
coord CPLYaxisVctTR2t8 @ TR2Lathe + 14
real ToolWidthTR2t8 @ TR2Lathe + 26
-- (Tool Width if tool type is square
-- otherwise, Tool Nose Radius)
real ToolNoseRadTR2t8 @ TR2Lathe + 30
-- (If tool type is is square w/radius this
-- holds the ToolNoseRadius)
real SpeedTR2t8 @ TR2Lathe + 34
--
real FeedTR2t8 @ TR2Lathe + 42
--
real ToleranceTR2t8 @ TR2Lathe + 50
--
real MaxTDepthTR2t8 @ TR2Lathe + 58
real MaxCutDepthTR2t8 @ TR2Lathe + 62
real StockTR2t8 @ TR2Lathe + 66
real BackAngleTR2t8 @ TR2Lathe + 70
real StartRadCCSTR2t8 @ TR2Lathe + 74
--
real XGaugeTR2t8 @ TR2Lathe + 102
real YGaugeTR2t8 @ TR2Lathe + 106

-- Use with GetSrR, ModSrR, and PutSrR intrinics
-- 1) Access real variables in 'TR2Lathe'
-- 2) Substitute for the 'rbuf' parameter

real TR2Lathe(28)

G-67 Database Format

Database Format

-- 'TR' Sub-record definition - (2 1/2 Axis) ----

-- 2 1/2 Axis Lcycle Toolpath real information.

coord CPLXaxisVctTR2t9 @ TR2Lcycl + 2
coord CPLYaxisVctTR2t9 @ TR2Lcycl + 14
real ToolDiamTR2t9 @ TR2Lcycl + 26
real DepthTR2t9 @ TR2Lcycl + 30
-- (ABS or INC value)
real SpeedTR2t9 @ TR2Lcycl + 34
--
real FeedTR2t9 @ TR2Lcycl + 42
--
real CutInDistTR2t9 @ TR2Lcycl + 66
real ZDiameterTR2t9 @ TR2Lcycl + 70
real XDepthTR2t9 @ TR2Lcycl + 74
real RetrApprTR2t9 @ TR2Lcycl + 78
--
real TTipAngleTR2t9 @ TR2Lcycl + 94
real HoleDepthTR2t9 @ TR2Lcycl + 98
real XGaugeTR2t9 @ TR2Lcycl + 102
real YGaugeTR2t9 @ TR2Lcycl + 106

-- Use with GetSrR, ModSrR, and PutSrR intrinsics
-- 1) Access real variables in 'TR2Lcycl'
-- 2) Substitute for the 'rbuf' parameter

real TR2Lcycl(28)

G-68 UPL Revision 6.0

Database Format

-- 'TR' Sub-record definition - (2 1/2 Axis) ---

-- 2 1/2 Axis Lathe Point to Point
-- Toolpath real information.

coord CPLXaxVctTR2t10 @ TR2LPTP + 2
coord CPLYaxVctTR2t10 @ TR2LPTP + 14
real ToolWidthTR2t10 @ TR2LPTP + 26
-- (Tool Width if tool type is square
-- otherwise, Tool Nose Radius)
real ToolNoseRaTR2t10 @ TR2LPTP + 30
-- (If tool type is is square w/radius this
-- holds the Tool NoseRadius)
real SpeedTR2t10 @ TR2LPTP + 34
--
real FeedTR2t10 @ TR2LPTP + 42
--
real ToleranceTR2t10 @ TR2LPTP + 50
--
real MaxTDepthTR2t10 @ TR2LPTP + 58
--
real XGaugeTR2t10 @ TR2LPTP + 102
real YGaugeTR2t10 @ TR2LPTP + 106

-- Use with GetSrR, ModSrR, and PutSrR intrinsics
-- 1) Access real variables in 'TR2LPTP'
-- 2) Substitute for the 'rbuf' parameter

real TR2LPTP(28)

G-69 Database Format

Database Format

-- 'TS' Sub-record definition - (2 1/2 Axis) ----

-- 2 1/2 Axis Toolpath Tool Spin information.

-- Holds Tool Spin Direction and Feed Rate.
-- Tool Spin Direction:
-- (-1, 0, 1)
-- Tool Feed Rate:
-- (0=feed, 1=rapid, etc)
--
-- TS subrecord appears in a triple of TS, XN, AC
-- to represent a toolpath. The XN subrecord may
-- hold up to 1350 vertices. There may be more
-- one triple of these subrecords if the toolpath
-- has more than 1350 vertices.

-- Use with GetSrI, ModSrI, and PutSrI intrinsics
-- 1) Access integer variables in 'TSsubrec'
-- 2) Substitute for the 'ibuf, parameter

integer TSsubrec(2)

integer ToolSpinDirTS @ TSsubrec + 2
integer ToolFeedRateTS @ TSsubrec + 4

-- WD Sub-record definition ---------------------

-- Use with GetSrC, ModSrC, and PutSrC intrinsics
-- 1) Assign desired coordinates to 'WDsubrec'
-- 2) Substitute for 'WDsubrec' the 'Cbuf'
-- parameter.
-- Note: WD sub-record has a variable length.
-- You may have to adjust size of WDsubrec array
-- for your needs.

coord WDsubrec(100)

G-70 UPL Revision 6.0

Database Format

-- XD Sub-record definition ---------------------

-- Interpolation data points.

-- If an Nspline or Nsurface was created using
-- interpolation data points, those points are
-- saved in XD subrecords.
-- Nsplines: the 'I' flag in the Nspline header
-- subrecord NC must be 1. The XD
-- subrecord will contain Im' points.
-- (see NC subrecord for more info)
-- Nsurfaces: the 'I' flag in the Nsurface header
-- subrecord NS must be 1. There will
-- 'pv' XD subrecords containing 'pu'
-- data points, where:
-- pv = nv – 2 * d
-- pu = nu – 2 * d
-- (see NS subrecord for more info)

-- Use with GetSrC, ModSrC, and PutSrC intrinsics
-- 1) Access data points in array 'XDsubrec'.
-- 2) Substitute 'XDsubrec' for 'cbuf'param.
-- This is a variable length subrecord. You may
-- need to change the dimension of 'XDsubrec'
-- for your needs.

coord XDsubrec(100)

G-71 Database Format

Database Format

--
-- XP Sub-record definition ----------------------
--
-- Cross Hatch Parameters.
--
-- Holds angle, spacing, offset, pattern, and
-- number of cross hatch boundaries
-- Pattern: -1 = solid fill; 0 = standard;
-- >0 = special

-- Use with GetSrR, ModSrR, and PutSrR intrinsics
-- 1) Access variables named below.
-- 2) Substitute 'XPsubrec' for 'rbuf'param.

real XPsubrec(4)
real AngleXP @ XPsubrec + 2
real SpacingXP @ XPsubrec + 6
real OffsetXP @ XPsubrec + 10
integer PatternXP @ XPsubrec + 14
integer NumBoundXP @ XPsubrec + 16

--
-- XT Sub-record definition ----------------------
--
-- 3-D Extents for Nsplines and Nsurfaces.
--
Holds coordinates of opposite corners of a 3-D
box containing the of a Nspline or Nsurface
and their controlling polygons.
--
Use with GetSrC, ModSrC, and PutSrC intrinics
 1) Access variables named below.
 2) Substitute 'XTsubrec' for 'cbuf'param.
--
coord XTsubrec(4)
coord PolygonMinXT @ XTsubrec + 2
coord PolygoriMaxXT @ XTsubrec + 14
coord CurveSurfaceMinXT @ XTsubrec + 26
coord CurveSurfaceMaxXT @ XTsubrec + 38
--

G-72 UPL Revision 6.0

Database Format

Direct Database Access Intrinsic Procedures

The MIB subrecord may be accessed usine, the intrinsics ReadEnt,
WriteEnt, and AddEnt. Use ReadEnt to read the MIB record of an entity.
A combination of ReadEnt and WriteEnt should be used to modify an
entity's MIB portion. AddEnt should be used when adding an entity to the
database.

The following is a list of special procedures to read, modify, and write,
the Part Data File (PDF) subrecord specified by the last two letters of the
name:

RSubRecAC MSubRecAC WSubRecAC
RSubRecAP MSubRecAP WSubRecAP
RSubRecDS MSubRecDS WSubRecDS
RSubRecEX MSubRecEX WSubRecEX
RSubRecIL MSubRecIL WSubReelL
RSubRecL1 MSubRecL1 WSubRecL1
RSubRecL2 MSubReeL2 WSubRecL2
RSubReePA MSubRecPA WSubRecPA
RSubRecPX MSubRecPX WSubRecPX
RSubReeTD MSubRecTD WSubRecTD
RSubRecTF MSubRecTF WSubRecTF
RSubRecTX MSubRecTX WSubRecTX
RSubRecVN MSubRecVN WSubRecVN
RSubRecXH MSubRecXH WSubRecXH
RSubRecXN MSubRecXN WSubRecXN
RSubRecXZ MSubRecXZ WSubRecXZ

The next group of procedures provides access to the remaining PDF
subrecords. Most of the subrecords not supported by the above routines
are documented above. These routines may be used to access them. The
data types supported are Integer, Real, Coord, and String. For each data
type, there is a routine to Get (read), Modify, and Put (write) a subrecord.
These routines are:

GetSr ModSr Putsr
GetSrC ModSrC Putsrc
GetSrl ModSrl PutsrI
GetSrR ModSrR PutSrR
GetSrS ModSrS Putsrs

G-73 Database Format

Database Format

AddEnt

Type

Intrinsic Procedure Database Access

Purpose

Adds the MIB portion a new entity to the end of the database.

Syntax

AddEnt(etype, data(1), mib, ierr)

Parameters

etype: Integer expression (input)

 Specifies the entity type number for the new entity. Values are:

1 Line 14 Ellipse
2 String 15 Construction line
3 Arc 16 Curve (cpole)
4 Text 17 Surface (spole)
5 Point 18 Plane
6 Linear dimension 30 Nspline
7 Label, point dimension 31 Nsurface
8 Radial dimension 35 3-axis toolpath
9 Angular dimension 36 2-1/2-axis toolpath
10 Cross-hatching 145 Display image
11 Figure instance 146 View
12 Diameter dimension 147 Figure image list
13 MView (multiple view) 148 Extents

data: Integer array of 5 elements (input)

Gives the attributes for the new entity. The array elements are:

 1 Layer number-, if negative one, use active layer.
 2 View of visibility.
 3 Group number.
 4 Line font number.
 5 Color number, if 0 use current color.

mib: Integer4 variable (input/output)

 Returns the Master Index Block (MIB) number of the new entity.

ierr: Integer variable (input/output)

 Returns an error number after operation; zero indicates a
 successful operation. Other values indicate and error.

G-74 UPL Revision 6.0

Database Format

GetSr

Type

Intrinsic Procedure Database Access

Purpose

Allows direct reading of database subrecords that consist of only integer
data. No data type conversion or variable basing is necessary.

WARNING: This procedure is for advanced users only.

Syntax

GetSr(mib, srtype, occur nbytesget, nbytesgot, buf(1), error)

Parameters

mib: Integer4 expression (input)

 Specifies the MIB number of the entity whose subrecord is
 read from.

srtype: Strino expression of 2 characters (input)

Specifies the type of subrecord to retrieve. lf the parameter is an
empty string, the procedure retrieves any type of subrecord.

occur: Integer expression (input)

 Specifies which occurrence of the srtype subrecord to get. lt is

 used if the Part Data File (PDF) portion of the entity record has

 more than one srtype subrecord to read. lf this is not the

 case,set the occur parameter to one.

nbytesget: Integer expression (input)

 Specifies the number of bytes to read from the subrecord. lf

 nbytesget equals negative one, all the bytes in the subrecord

 will be read. Note that there are two bytes of data per integer.

nbytesgot: Integer variable (input/output)

 Returns the number of bytes actually retrieved from the subrecord.

buf: String variable, output

 Data retrieved form the database subrecord is placed in this
 variable. lt may contain several different data types. To
 extract this information, variables of the appropriate types

 should be based to the buf string variable.

G-75 Database Format

Database Format

error: Integer variable (input/output)

 Returns the error condition:

0 No errors were found.
1 An IO error was found.
2 There are not enough bytes to read

 (nbytesget is too big).

3 The subrecord was not found.
4 An invalid MIB number was given.

Example

Get_Sr(Mib, "PL", 1, -1, NBytesGot, Buf(1), Error)

G-76 UPL Revision 6.0

Database Format

GetSrC

Type

Intrinsic Procedure Database Access

Purpose

Allows direct reading of database subrecords that consist of only coordinate
data. No data type conversion or variable basing is necessary.

WARNING: This procedure is for advanced users only.

Syntax

GetSrC(mib, srtype, occur nbytesget, nbytesgot, cbuf(1), error)

Parameters

mib: Integer4 expression (input)

 Specifies the MIB number of the entity that the subrecord is
 read from.

srtype: String expression of 2 characters (input)

 Specifies the type of subrecord to retrieve. lf the parameter is
 an empty string, the procedure retrieves any type of subrecord.

occur: Integer expression (input)

 Speeifies which occurrence of the srtype subrecord to get. It is

 used if the Part Data File (PDF) portion of the entity record has

 more than one srtype subrecord to read. lf the PDF portion of

 the entity record does not have more than one srtype subrecord

 to read, set the occur parameter to one.

nbytesget: Integer expression (input)

 Specifies the number of bytes to read from the subrecord. lf

 nbytesget equals negative one, all the bytes in the subrecord

 will be read. Note that there are 12 bytes of data per
 coordinate.

nbytesgot: Integer variable (input/output)

 This returns the number of bytes actually retrieved from the
 subrecord.

G-77 Database Format

Database Format

cbuf: Coordinate array of nbytes/12 elements (input/output)

 This is the buffer that returns the subrecord data. You must

 declare cbuf to have enough array elements for the largest

 subrecord that will be retrieved. The maximum size is 1.000
 elements.

error: Integer variable (input/output)

 Returns the error condition.

0 No errors were found.
1 An IO error was found.
2 There are not enough bytes read

 (nbytesget is too big).

3 The subrecord was not found.
4 An invalid MIB number was given.

Examples

Get_Sr_C(StrMib,"XN", 1, -1 ,NbytesGot, Verts (1), Error)
Get_Sr_C(LinMib,"XZ", 1, 24, NbytesGot, Verts (1), Error)

G-78 UPL Revision 6.0

Database Format

GetSrI

Type

Intrinsic Procedure Database Access

Purpose

Allows direct reading of database subrecords that consist of only integer data.
No data type conversion or variable basing is necessary.

WARNING: This procedure is for advanced users only.

Syntax

GetSrl(mib, srtype, occur, nbytesget, nbytesgot, ibuf(1), error)

Parameters

mib: Integer4 expression (input)

 Specifies the MIB number of the entity that the subrecord is
 read from.

srtype: String expression of 2 characters (input)

 Specifies the type of subrecord to retrieve. lf the parameter is
 an empty string, the procedure retrieves any type of subrecord.

occur: Integer expression (input)

 Specifies which occurrence of the srtype subrecord to get. lt is

 used if the Part Data File (PDF) portion of the entity record has

 more than one srtype subrecord to read. lf the PDF portion of

 the entity record does not have more than one srtype subrecord

 to read, set the occur Parameter to one.

nbytesget: Integer expression (input)

 Specifies the number of bytes to read from the subrecord. lf

 nbytesget equals negative one, all the bytes in the subrecord

 will be read. Note that there are two bytes of data per integer.

nbytesgot: Integer variable (input/output)

 Returns the number of bytes actually retrieved from the
 subrecord.

G-79 Database Format

Database Format

ibuf: Integer array of nbytesget/ 2 elements (input/output)

 This is the buffer that returns the subrecord data. You must

 declare ibuf to have enough array elements for the largest

 subrecord to be retrieved. The maximum size is 6.000
 elements.

error: Integer variable (input/output)

 Returns the error condition:

 0 No errors were found.
 1 An IO error was found.
 2 There are not enough bytes to read

 (nbytesget is too big).

 3 The subrecord was not found.
 4 An invalid MIB number was given.

Example

Get_Sr_I(Mib, PL, 1, -1, NBytesGot, IBuf(1), Error)

G-80 UPL Revision 6.0

Database Format

GetSrR

Type

Intrinsic Procedure Database Access

Purpose

Allows direct reading of database subrecords that consist of only real data. No
data type conversion or variable basing is necessary.

WARNING: This procedure is for advanced users only.

Syntax

GetSrR(mib, srtype, occur, nbytesget, nbytesgot, rbuf(1), error)

Parameters

mib: Integer4 expression (input)

 Specifies the MIB number of the entity that the subrecord is
 read from.

srtype: String expression of 2 characters (input)

 Specifies the type of subrecord to retrieve. If the parameter is
 an empty string, the procedure retrieves any type of subrecord.

occur: Integer expression (input)

 Specifies which occurrence of the srtype subrecord to get. lt is

 used if the Part Data File (PDF) portion of the entity record has

 more than one srtype subrecord to read. lf the PDF portion of

 the entity record does not have more than one srtype subrecord

 to read, set the occur Parameter to one.

nbytesget: Integer expression (input)

 Specifies the number of bytes to read from the subrecord. lf

 nytesget equals a negative one, all the bytes in the subrecord

 will be read. Note: there are four bytes of data per real number.

nbytesgot: Integer variable (input/output)

 This returns the number of bytes retrieved from the subrecord.

rbuf: Real array of nbytesget/4 elements (input/output)

 This is the buffer that returns the subrecord data. You must

 declare rbuf to have enough array elements for the largest

 subrecord to be retrieved. The maximum size is 3.000
 elements.

G-81 Database Format

Database Format

error: Integer variable (input/output)

 Returns the error condition:

 0 No errors were found.
 1 An IO error was found.
 2 There are not enough bytes to read
 (nbytesget is too big).
 3 The subrecord was not found.
 4 An invalid MIB number was given.

Example

Get_Sr_R(Mib, "EP", 1, -1, NBytesGot, AVT(1), Error)

G-82 UPL Revision 6.0

Database Format

GetSrS

Type

Intrinsic Procedure Database Access

Purpose

Allows direct reading of database subrecords that consist only of string
data. No data type conversion or variable basing is necessary.
Data from the subrecord is stored starting in the string data field. You
must update the current length field of the character string in your
program.

WARNING: This procedure is for advanced users only.

Syntax

GetSrS(mib, srtype, occur nbytesget, nbytesgot, sbuf, error)

Parameters

mib: Integer4 expression (input)

 Specifies the MIB number of the entity that the subrecord is
 read from.

srtype: String expression of 2 characters (input)

 Specifies the type of subrecord to retrieve. If the parameter is
 an empty string, the procedure retrieves any type of subrecord.

occur: Integer expression (input)

 Specifies which occurrence of the srtype subrecord to get. lt is

 used if the Part Data File (PDF) portion of the entity record has

 more than one srtype subrecord to read. lf the PDF portion of

 the entity record does not have more than one srtype subrecord

 to read, set the occur parameter to one.

nbytesget: Integer expression (input)

 Specifies the number of bytes to read from the subrecord. lf

 nbytesget equals a negative one, all the bytes in the subrecord

 have been read.

nbytesgot: Integer variable (input/output)

 This returns the number of bytes actually retrieved from the

 subrecord. You should update the length attribute of sbuf with

 this value. See the example below.

G-83 Database Format

Database Format

sbuf: String variable of nbytesget characters (input/output)

 This is the buffer that returns the subrecord data. You must

 declare sbuf to have enough characters for the largest

 subrecord to be retrieved. The maximum size is 12.000 bytes.

error: Integer variable (input/output)

 Retums the error condition:

0 No errors were found.
1 An IO error was found.
2 There are not enough bytes to read

 (nbytesget is too big).

3 The subrecord was not found.
4 An invalid MIB number was given.

Example

Get_Sr_S(PropMib, 'D2', 2, - 1, NBytesGot, PropStr, Error)
PropStr.length = NBytesGot

G-84 UPL Revision 6.0

Database Format

ModSr

Type

Intrinsic Procedure Database Access

Purpose

Modifies a database subrecord that consists of integer data only. Use this
procedure when you want to change integer information about an entity in the
PDF portion of the part database.

WARNING: This procedure is for advanced users only. Improper use could
 damage or destroy your part database

Syntax

ModSr(mib, srtype, nn, nbyte, buf(1), error)

Parameters

mib: Integer4 expression (input) Specifies the MIB number of the

 entity whose subrecord is to be modified.

srtype: String expression of 2 characters (input)

 Specifies the two-character subrecord type.

nn: Integer expression (input)

 Get the nnth occurrence of subrecord of the type srtype.

nbyte: Integer expression (input)

 Specifies the number of bytes of valid data in buf.

buf: String expression (input)

 Specifies new data to replace old data received from the
 subrecord.

error: Integer variable (input/output) Returns the error condition:

 0 no errors were found.
 1 an IO error was found.
 3 the subrecord was not found.
 4 an invalid MIB number was given.

G-85 Database Format

Database Format

ModSrC

Type

Intrinsic Procedure Database Access

Purpose

Modifies a database subrecord that consists of coordinate data only. Use this
procedure when you want to change coordinate information about an entity in
the PDF portion of the part database.

ModSrC is similar to the ModSr procedure, except that no variable basing or
data type conversion is necessary.

WARNING: This procedure is for advanced users only. Improper use could

damage or destroy your part database.

Syntax

ModSrC(mib, srtype, occur, nbytesmod, cbuf(1), error)

Parameters

mib: Integer4 expression (input). Specifies the MIB number of the

 entity whose subrecord is to be modified.

srtype: String expression of 2 characters (input)

 Specifies the two-character subrecord type.

occur: Integer expression (input). Specifies which occurrence of the

 srtype subrecord to get. lt is used if the Part Data File (PDF)

 portion of the entity record has more than one srtype subrecord

 to read. lf the PDF portion of the entity record does not have

 more than one srtype subrecord to read, set occur to one.

nbytesmod: Integer expression (input) Specifies the number of bytes of

 valid data in cbuf.

cbuf. Coordinate array of nbytesmod /12 elements (input/output)

 Specifies the buffer holding new subrecord data. The
 maximum size is 1.000 elements.

error: Integer variable (input/output) Returns the error condition:

 0 no errors were found.
 1 an IO error was found.
 3 the subrecord was not found.
 4 an invalid MIB number was given.

G-86 UPL Revision 6.0

Database Format

ModSrI

Type

Intrinsic Procedure Database Access

Purpose

Modifies a database subrecord that consists of integer data only. Use this
procedure when you want to change integer information about an entity in
the PDF portion of the part database.

ModSrl is similar to the ModSr procedure except that no variable basing or
data type conversion is necessary.

WARNING: This procedure is for advanced users only. Improper use could
damage or destroy your part database

Syntax

ModSrl(mib, srtype, occur, nbytesmod, ibuf(1), error)

Parameters

mib: Integer4 expression (input) Specifies the MIB number of the

 entity whose subrecord is to be modified.

srtype: String expression of 2 characters (input)

 Specifies the two-character subrecord type.

occur: Integer expression (input) Specifies which occurrence of the

 srtype subrecord to get. lt is used if the Part Data File (PDF)

portion of the entity record has more than one srtype
subrecord to read. lf the PDF portion of the entity record

does not have more than one srtype subrecord to read, set

occur to one.

nbytesmod: Integer expression (input)

 Specifies the number of bytes of valid data in ibuf.

ibuf: Integer array of nbytesmod / 2 elements (input/output)

 Speeifies the buffer holding new subrecord data. The
 maximum size is 6.000 elements.

error: Integer variable (input/output) Returns the error condition:

 0 no errors were found.
 1 an IO error was found.
 3 the subrecord was not found.
 4 an invalid MIB number was given.

G-87 Database Format

Database Format

ModSrR

Type

Intrinsic Procedure Database Access

Purpose

Modifies a database subrecord that consists of real data only. Use this
procedure when you want to change real nurnber information about an
entity in the PDF portion of the part database.

ModSrR is similar to the ModSr procedure except that no variable basing
or data type conversion is necessary.

WARNING: This procedure is for advanced users only. Improper use could

damage or destroy your part database.

Syntax

ModSrR(mib, srtype, occur, nbytesmod, rbuf(1), error)

Parameters

mib: Integer4 expression (input) Specifies the MIB number of the

 entity whose subrecord is to be modified.

srtype: String expression of 2 characters (input)

 Specifies the two-charaeter subrecord type.

occur: Integer expression (input) Specifies which occurrence of the

 srtype subrecord to get. lt is used if the Part Data File (PDF)

 portion of the entity record has more than one srtype subrecord

 to read. lf the PDF portion of the entity record does not have

 more than one srtype subrecord to read, set occur to one.

nbytesmod: Integer expression (input)

 Specifies the number of bytes of valid data in rbuf. The

 maximum size is 3.000 elements.

rbuf: Coordinate array of nbytesmod/4 elements (input/output)

 Specifies the buffer holding new subrecord data.

error: Integer variable (input/output) Retums the error condition:

 0 no errors were found.
 1 an IO error was found.
 3 the subrecord was not found.
 4 an invalid MIB number was given.

G-88 UPL Revision 6.0

Database Format

ModSrS

Type

Intrinsic Procedure Database Access

Purpose

Modifies a database subrecord that consists of character string data only.
Only the actual string data is written to the subrecord, the string variable
attributes LEN and .LENGTH are not written to the subrecord. lf the
attributes are needed, you must explicitly write them to the database by

basing another string variable to the sbuf parameter.

Use this procedure when you want to change character string information
about an entity in the PDF portion of the part database.

ModSrS is similar to the ModSr procedure except that no variable basing
or data type conversion is necessary.

WARNING: This procedure is for advanced users only. Improper use could

damage or destroy your part database

Syntax

ModSrS(mib, srtype, occur, nbytesmod, sbuf, error)

Parameters

mib: Integer4 expression (input) Specifies the MIB number of the

 entity whose subrecord is to be modified.

srtype: String expression of 2 characters (input)

 Specifies the two-character subrecord type.

occur: Integer expression (input) Specifies which occurrence of the

 srtype subrecord to get. lt is used if the Part Data File (PDF)

portion of the entity record has more than one srtype
subrecord to read. If the PDF portion of the entity record

does not have more than one srtype subrecord to read, set

occur to one.

nbytesmod: Integer expression (input) Specifies the number of bytes of

 valid data in sbuf. Note that it is this parameter, and not the

 sbuf.LENGTH attribute, that defines how many bytes are

 modified.

G-89 Database Format

Database Format

sbuf: String variable of nbytesmod characters (input/output)

 Specifies the buffer holding new subrecord data. The
 maximum length is 12.000 bytes.

error: Integer variable (input/output) . Returns the error condition:

0 no errors were found.

 1 an IO error was found.
 3 the subrecord was not found.
 4 an invalid MIB number was given.

G-90 UPL Revision 6.0

Database Format

MSubrecAC

Type

Intrinsic Procedure Database Access

Purpose

Modifies the contents of an AC type subrecord. The AC subrecord holds data
about an arc entity. Use this procedure when you want to change the
information about an arc entity in the PDF portion of the part database.

WARNING: This procedure is for advanced users only. Incorrect use could
damage or destroy your part database.

Syntax

MSubrecAC(mib, occur, error, transform(1), radius, abeg, aend)

Parameters

mib: Integer4 expression (input)

 Specifies the MIB number of the entity that contains the AC
 subrecord.

occur: Integer expression (input)

 Specifies which occurrence of the AC subrecord to modify. lf
 there is one or more AC subrecord for a given entity, use this
 parameter to specify the particular subrecord. The occurrences
 start at one and increase with each additional occurrence. lf a
 specified occurrence of the subrecord does not exist, an error

 code of three is returned in the error parameter.

 Programming Tip: To call this procedure, give the MIB
 number for the entity and the first occurrence of the subrecord
 you want to access. Subsequent calls with the same MIB

 number, and a negative one for the occur parameter, will

 automatically access the next AC subrecord. An error three
 returns if there are no more AC subrecords. Using this

 programming tip is faster than incrementing the occur
 parameter for each occurrence of the subrecord.

G-91 Database Format

Database Format

error.: Integer variable (input/output)

 This parameter returns the error condition:

 0 no errors were found.
 1 an IO error was found.
 3 the subrecord was not found.
 4 an invalid MIB number was given.

transform: Real array of 12 elements (input/output)

 Specifies the arc's view transform. This transformation matrix
 defines the plane which the arc lines in. Usually, this is the

view the arc was created in. Elements 10, 11, and 12
represent the origin of the arc.

radius: Real expression (input)

 Specifies the radius of the arc in database units.

abeg: Real expression (input)

 Specifies the beginning angle of the arc given in radians.
Angle zero starts at the X-axis and increases
counterclockwise. The X-axis is defined by the arc's view
transform.

aend: Real expression (input)

 Specifies the ending angle of the arc given in radians. Angle
 zero starts at the X-axis and increases counterelockwise. The
 X-axis is defined by the arc's view transform.

G-92 UPL Revision 6.0

Database Format

MSubrecAP

Type

Intrinsic Procedure Database Access

Purpose

Modifies the contents of an AP type subrecord. The AP subrecord holds
data about partial arcs used in angular dimensions. Use this procedure
when you want to change information about an angular dimension entity
in the PDF portion of the part database.

WARNING: This procedure is for advanced users only. Incorrect use could
damage or destroy your part database.

Syntax

MSubrecAP(mib, occur, error, org, radius1, abeg1,

aend1, radius2, abeg2, aend2)

Parameters

mib: Integer4 expression (input)

 Specifies the MIB number of the entity that contains the AP
 subrecord.

occur: Integer expression (input)

 Specifies which occurrence of the AP subrecord to modify. lf
 there is one or more AP subrecord for a given entity, use this
 parameter to specify the particular subrecord. The occurrences
 start at one and increase with each additional occurrence. lf a
 specified occurrence of the subrecord does not exist, an error

 code of three is returned in the error parameter.

 Programming Tip: To call this procedure, give the MIB
 number for the entity and the first occurrence of the subrecord
 you want to access. Subsequent calls with the same MIB

 number, and a negative one for the occur parameter, will

 automatically access the next AP subrecord. An error three
 returns if there are no more AP subrecords. Using this

 programming tip is faster than incrementing the occur
 parameter for each occurrence of the subrecord.

G-93 Database Format

Database Format

error: Integer variable (input/output)

 This parameter returns the error condition:

 0 no errors were found.
 1 an IO error was found.
 3 the subrecord was not found.
 4 an invalid MIB number was given.

org: Coordinate expression (input)

 Specifies the origin of the arc(s) in model coordinates.

radius1: Real expression (input)

 Speeifies the radius of the first arc in database units.

abeg1: Real expression (input)

 Specifies the beginning angle of the first arc in radians. Angle
 zero begins at the X-axis (defined by the arc's view transform)
 and increases counterclockwise.

aend1: Real expression (input)

 Specifies the ending angle of the first arc in radians. Angle
 zero starts at the X-axis and increases counterclockwise. The
 X-axis is defined by the arc's view transform.

radius2: Real expression (input)

 Specifies the radius of the second arc in database units.

abeg2: Real expression (input)

 Specifies the beginning angle of the second arc in radians.
 Angle zero begins at the X-axis and increases
 counterclockwise. The X-axis is defined by the arc's view
 transform.

aend2: Real expression (input)

 Specifies the ending angle of the second arc in radians. Angle
 zero starts at the X-axis and increases counterclockwise. The
 X- axis is defined by the arc's view transform.

G-94 UPL Revision 6.0

Database Format

MSubrecDS

Type

Intrinsic Procedure Database Access

Purpose

Modifies the contents of a DS type subrecord. The DS subrecord holds
data about the display image that was saved in the Personal Designer
command SAVE IMAGE. Use this procedure when you want to change
information about an image entity in the PDF portion of the part database.

WARNING: This procedure is for advanced users only. Incorrect use could
damage or destroy your part database.

Syntax

MSubrecDS(mib, occur, error, extents(1), scrscl, viewno, dispno)

Parameters

mib: Integer4 expression (input)

 Specifies the MIB number of the entity containing the DS
 subrecord.

occur: Integer expression (input)

 Specifies which occurrence of the DS subrecord to modify. lf
 there is one or more DS subrecord for a given entity, use this
 parameter to specify the particular subrecord. The occurrences
 start at one and increase with each additional occurrence. lf a
 specified occurrence of the subrecord does not exist, an error

 code of three is returned in the error parameter.

 Programming Tip: To call this procedure, give the MIB
 number for the entity and the first occurrence of the subrecord
 you want to access. Subsequent calls with the same MIB

 number, and a negative one for the occur parameter, will

 automatically access the next DS subrecord. An error three
 will be returned if there are no more DS subrecords. Using

 this programming tip is faster than incrementing the occur
 parameter for each occurrence of the subrecord.

G-95 Database Format

Database Format

error: Integer variable (input/output)

 This parameter returns the error condition:

 0 no errors were found.
 1 an IO error was found.
 2 the subrecord was not found.
 4 an invalid MIB number was given.

extents: Real array of 4 elements (input/output)

 Specifies the maximum and minimum values used in a display
 image. They are given as X minimum and maximum
 followed by Y minimum and maximum.

scrscl: Real expression (input)

 Specifies the display image's screen scale.

viewno: Integer expression (input)

 Specifies the view number associated with the display image.

dispno: Integer expression (input)

 Specifies the display image number.

G-96 UPL Revision 6.0

Database Format

MSubrecEX

Type

Intrinsic Procedure Database Access

Purpose

Modifies the contents of an EX type subrecord. The EX subrecord holds
data about the extents of a part or figure in 3D space. Use this procedure
when you want to change information about extents, figure instance, or
figure image entities, in the PDF portion of the part database.

WARNING: This procedure is for advanced users only. Incorrect use could
damage or destroy your part database.

Syntax

MSubrecEX(mib, occur, error, extents(1))

Parameters

mib: Integer4 expression (input)

 Specifies the MIB number of the entity that contains the EX
 subrecord.

occur: Integer expression (input)

 Specifies which occurrence of the EX subrecord to modify. lf
 there is one or more EX subrecord for a given entity, use this
 parameter to specify the particular subrecord. The occurrences
 start at one and increase with each additional occurrence. If a
 specified occurrence of the subrecord does not exist, an error

 code of three is returned in the error parameter.

 Programming Tip: To call this procedure, give the MIB
 number for the entity and the first occurrence of the subrecord
 you want to access. Subsequent calls with the same MIB

 number, and a negative one for the occur parameter, will

 automatically access the next EX subrecord. An error three
 will be retumed if there are no more EX subrecords. Using

 this programming tip is faster than incrementing the occur
 parameter for each occurrence of the subrecord.

G-97 Database Format

Database Format

error: Integer variable (input/output) Returns the error condition:

 0 no errors were found.
 1 an IO error was found.
 3 The subrecord was not found.
 4 an invalid MIB number was given.

extents: Real array of 24 elements (input/output)

 Specifies the range of X, Y, and Z values used in a drawing or
 figure. These values are always model space coordinates.
 This parameter can be used in two ways.

 1. The first holds the eight X, Y, and Z values that

define the corners of an imaginary cube which surrounds all
part or figure geometry.

 2. The second method, used by surfacing in Personal
 Designer, holds the six minimum and maximum values

used by any entity in the database. These are specified in
the following order: minimum X, maximum X, minimum Y,
maximum Y, minimum Z, maximum Z. The same

 imaginary cube can be created by generating planes
 normal to X, Y, and Z axes and passing through the six
 points.

G-98 UPL Revision 6.0

Database Format

MSubrecIL

Type

Intrinsic Procedure Database Access

Purpose

Modifies the contents of an IL type subrecord. The IL subrecord holds
data about a figure image that is to be inserted in the current part. Use
this procedure when you want to change information about a figure
image entity in the PDF portion of the part database.

WARNING: This procedure is for advanced users only. Incorrect use could
damage or destroy your part database.

Syntax

MSubreclL(mib, occur, error, figname, figmib, entcount, figdate, figtime)

Parameters

mib: Integer4 expression (input)

 Specifies the MIB number of the entity that contains the
 IL subrecord.

occur: Integer expression (input)

 Specifies which occurrence of the IL subrecord to modify. lf
 there is one or more IL subrecord for a given entity, use this
 parameter to specify the particular subrecord. The occurrences
 start at one and increase with each additional occurrence. If a
 specified occurrence of the subrecord does not exist, an error

 code of three is returned in the error parameter.

 Programming Tip: To call this procedure, give the MIB
 number for the entity and the first occurrence of the subrecord
 you want to access. Subsequent calls with the same MIB

 number, and a negative one for the occur parameter, will

 automatically access the next IL subrecord. An error three will
 be returned if there are no more IL subrecords. Using this

 programming tip is faster than incrementing the occur
 parameter for each occurrence of the subrecord.

G-99 Database Format

Database Format

error: Integer variable (input/output)

 This parameter returns the error condition:

 0 no errors were found.
 1 an IO error was found.
 3 the subrecord was not found.
 4 an invalid MIB number was given.

figname: String expression of 64 characters (input)

 Specifies the figure file name including the path name.

figmib: Integer4 expression (input)

 Specifies the MIB number of the first entity in the figure image
 list.

entcount: Integer expression (input)

 Specifies the number of entities in the figure image list starting

 with the mib parameter.

figdate: Integer expression (input)

 Specifies the file date of the figure part file. This is the date
 the file was last modified. See Appendix E, Internal Data
 Storage Format, for more information about the date format.

figtime: Integer expression (input)

 Specifies the file time of the figure part file. This is the time
 the file was last modified. See Appendix E, Internal Data
 Storage Format, for more information about the time format.

G-100 UPL Revision 6.0

Database Format

MSubrecL1

Intrinsic Procedure Database Access

Purpose

Modifies the contents of an L 1 type subrecord. The L1 subrecord holds data
about dimension extension line one. Use this procedure when you want to
change extension line information about a dimension entity in the PDF portion
of the part database.

WARNING; This procedure is for advanced users only. Incorrect use could
damage or destroy your part database.

Syntax

MsubrecL1(mib, occur, error pnt1, pnt2)

Parameters

mib: Integer4 expression (input)

 Specifies the MIB number of the entity that contains the L1
 subrecord.

occur: Integer expression (input)

 Specifies which occurrence of the L1 subrecord to modify. lf
 there is one or more L1 subrecord for a given entity, use this
 parameter to specify the particular subrecord. The occurrences
 start at one and increase with each additional occurrence. lf a
 specified occurrence of the subrecord does not exist, an error

 code of three is returned in the error parameter.

 Programming Tip: To call this procedure, give the MIB
 number for the entity and the first occurrence of the subrecord
 you want to access. Subsequent calls with the same MIB

 number, and a negative one for the occur parameter, will

 automatically access the next L1 subrecord. An error three
 will be returned if there are no more L1 subrecords. Using this

 programming tip is faster than inerementing the occur
 parameter for each occurrence of the subrecord.

G-101 Database Format

Database Format

error: Integer variable (input/output)

 This parameter returns the error condition:

 0 no errors were found.
 1 an IO error was found.
 3 the subrecord was not found.
 4 an invalid MIB number was given.

pnt1: Coordinate expression (input)

 Specifies the first endpoint of the extension line.

pnt2: Coordinate expression (input)

 Specifies the second endpoint of the extension line.

G-102 UPL Revision 6.0

Database Format

MSubrecL2

Type

Intrinsic Procedure Database Access

Purpose

Modifies the contents of an L2 type subrecord. The L2 subrecord holds
data about dimension extension line two. Use this procedure when you
want to change extension line information about a dimension entity in the
PDF portion of the part database.

WARNING: This procedure is for advanced users only. Incorrect use could

damage or destroy your part database.

Syntax

MSubrecL2(mib, occur, error pnt1, pnt2)

Parameters

mib: Integer4 expression (input) Specifies the MIB number of the

 entity that contains the L2 subrecord.

occur: Integer expression (input) Specifies which occurrence of the L2

 subrecord to modify. lf there is one or more L2 subrecord for a
 given entity, use occur to specify the particular subrecord. The
 occurrences start at one and increase with each additional
 occurrence. lf a specified occurrence of the subrecord does not

 exist, an error code of three is returned in the error parameter.

 Programming Tip: To call this procedure, give the MIB number
 for the entity and the first occurrence of the subrecord you want
 to access. Subsequent calls with the same MIB number, and a

 negative one for the occur parameter, will automatically access

 the next L2 subrecord. An error three will be returned if there
 are no more L2 subrecords. Using this programming tip is

 faster than incrementing the occur parameter for each

 occurrence of the subrecord.

error: Integer variable (input/output) Returns the error condition:

 0 no errors were found.
 1 an IO error was found.
 3 the subrecord was not found.
 4 an invalid MIB number was given.

G-103 Database Format

Database Format

pnt1: Coordinate expression (input)

 Specifies the first endpoint of the extension line.

pnt2: Coordinate expression (input)

 Specifies the second endpoint of the extension line.

G-104 UPL Revision 6.0

Database Format

MSubrecPA

Type

Intrinsic Procedure Database Access

Purpose

Modifies the contents of a PA type subrecord. The PA subrecord holds
data about entity properties. Use this procedure when you want to change
property information about any entity in the PDF portion of the part
database.

WARNING: This procedure is for advanced users only. Incorrect use could
damage or destroy your part database.

Syntax

MSubrecPA(mib, occur, error, pname, ptype, pval)

Parameters

mib: Integer4 expression (input)

 Specifies the MIB number of the entity that contains the PA
 subrecord.

occur: Integer expression (input)

 Specifies which occurrence of the PA subrecord to modify. lf
 there is one or more PA subrecord for a given entity, use this

parameter to specify the particular subrecord. The
occurrences start at one and increase with each additional
occurrence. lf a specified occurrence of the subrecord does

not exist, an error code of three is returned in the error
parameter.

 Programming Tip: To call this procedure, give the MIB
 number for the entity and the first occurrence of the subrecord
 you want to access. Subsequent calls with the same MIB

 number, and a negative one for the occur parameter, will

 automatically access the next PA subrecord. An error three
will be returned if there are no more PA subrecords. Using

this programming tip is faster than incrementing the occur
 parameter for each occurrence of the subrecord.

G-105 Database Format

Database Format

error: Integer variable (input/output)

 This parameter returns the error condition:

 0 no errors were found.
 1 an IO error was found.
 3 the subrecord was not found.
 4 an invalid MIB number was given.

pname: String expression of 8 characters (input)

 Specifies the property name.

ptype: String expression of 7 characters (input)

 Specifies the property type.

pval: String expression of 100 characters (input)

 Specifies the property value.

G-106 UPL Revision 6.0

Database Format

MSubrecPX

Type

Intrinsic Procedure Database Access

Purpose

Modifies the contents of a PX type subrecord. The PX subrecord holds data
about the point entity. Use this procedure when you want to change
information about a point entity in the PDF portion of the part database.

WARNING: This procedure is for advanced users only. Incorrect use could
damage or destroy your part database.

Syntax

MSubrecPX(mib, occur, error, pnt)

Parameters

mib: Integer4 expression (input)

 Specifies the MIB number of the entity that contains the
 PX subrecord.

occur: Integer expression (input)

 Speeifies which occurrence of the PX subrecord to modify. lf
 there is one or more PX subrecord for a given entity, use this
 parameter to specify the particular subrecord. The occurrences
 start at one and increase with each additional occurrence. lf a
 specified occurrence of the subrecord does not exist, an error

 code of three is returned in the error parameter.

 Programming Tip: To call this procedure, give the MIB
 number for the entity and the first occurrence of the subrecord
 you want to access. Subsequent calls with the same MIB

 number, and a negative one for the occur parameter, will

 automatically access the next PX subrecord. An error three
 will be returned if there are no more PX subrecords. Using

 this programming tip is faster than incrementing the occur
 parameter for each occurrence of the subrecord.

G-107 Database Format

Database Format

error: Integer variable (input/output)

 This parameter returns the error condition:

 0 no errors were found.
 1 an IO error was found.
 3 the subrecord was not found.
 4 an invalid MIB number was given.

pnt: Coordinate expression(input)

 Specifies the X, Y, Z values of a point in model coordinates.

G-108 UPL Revision 6.0

Database Format

MSubrecTD

Type

Intrinsic Procedure Database Access

Purpose

Modifies the contents of a TD type subrecord. The TD subrecord holds data
about text format and orientation. Note that it does not hold the actual text
itself, which is usually in a TX subrecord. Use this procedure when you want
to change information about text strings, dimensions, labels, and MView
entities in the PDF portion of the part database.

WARNING: This procedure is for advanced users only. Incorrect use could
damage or destroy your part database.

Syntax

MSubreeTD(mib, occur, error, transform(1), height, width, linesp, just(1))

Parameters

mib: Integer4 expression (input)

 Specifies the MIB number of the entity that contains the TD
 subrecord.

occur: Integer expression (input)

 Specifies which occurrence of the TD subrecord to modify. lf
 there is one or more TD subrecord for a given entity, use this
 parameter to specify the particular subrecord. The occurrences
 start at one and increase with each additional occurrence. lf a
 specified occurrence of the subrecord does not exist, an error

 code of three is returned in the error parameter.

 Programming Tip: To call this procedure, give the MIB
 number for the entity and the first occurrence of the subrecord
 you want to access. Subsequent calls with the same MIB

 number, and a negative one for the occur parameter, will

 automatically access the next TD subrecord. An error three
 will be returned if there are no more TD subrecords. Using

 this programming tip is faster than incrementing the occur
 parameter for each occurrence of the subrecord.

G-109 Database Format

Database Format

error: Integer variable (input/output)

 This parameter returns the error condition:

 0 no errors were found.
 1 an IO error was found.
 3 the subrecord was not found.
 4 an invalid MIB number was given.

transform: Real array of 12 elements (input/output)

 Specifies the text's view transform. This transforrnation
 matrix defines the plane that the text lies in. Usually, this is the
 view the text was created in. Elements 10, 11, and 12 are the
 origin of the arc. For TD subrecords, only elements 1 through
 6 and 10 through 12 of the view transform are used. Elements
 1 through 6 are the X-axis and Y-axis cosines. Elements 10
 through 12 are the origin of the text.

height: Real expression (input)

 Specifies the text height in database units.

width: Real expression (input)

 Specifies the text width in database units.

linesp: Real expression (input)

 Specifies the line spacing, in database units.

just: Integer array of 6 elements (input/output)

 This array specifies text justification.

 Valid values for just(1) are:

 1 left justification.
 2 right justification.
 3 center justification.

 just(2) is an associativity flag for dimension text. Values are:

 1 has D4 subrecord.
 0 has no associativity

 just(3) is MView number

 just(4) is text font number

 just(5) is text slant angle

 just(6) is reserved; do not use.

G-110 UPL Revision 6.0

Database Format

MSubrecTF

Type

Intrinsic Procedure Database Access

Purpose

Modifies the contents of a TF type subrecord. The TF subrecord holds
transformation data about a figure instance which is inserted into a part.
Use this procedure when you want to change information about a figure
instance entity in the PDF portion of the part database.

WARNING: This procedure is for advanced users only. Incorrect use could

damage or destroy your part database.

Syntax

MSubrecTF(mib, occur, error, transform(1), figuremib)

Parameters

mib: Integer4 expression (input) Specifies the MIB number of the

 entity that contains the TF subrecord.

occur: Integer expression (input) Specifies which occurrence of the

 TF subrecord to modify. lf there is one or more TF subrecord

 for a given entity, use occur to specify the particular subrecord.

 The occurrences start at one and increase with each additional
 occurrence. lf a specified occurrence of the subrecord does not

 exist, an error code of three is returned in the error parameter.

 Programming Tip: To call this procedure, give the MIB
 number for the entity and the first occurrence of the subrecord
 you want to access. Subsequent calls with the same MIB

 number, and a negative one for the occur parameter, will

 automatically access the next TF subrecord. An error three
 will be returned if there are no more TF subrecords. Using this

 programming tip is faster than incrementing the occur
 parameter for each occurrence of the subrecord.

error: Integer variable (input/output) Returns the error condition:

 0 no errors were found.
 1 an IO error was found.
 3 the subrecord was not found.
 4 an invalid MIB number was given.

G-111 Database Format

Database Format

transform: Real array of 15 elements (input/output)

 The first nine elements of the transformation matrix specify the
 figure viewing matrix. Elements 10, 11, and 12 are the figure
 origin. Elements 13, 14, and 15 are the figure's X, Y, and Z
 scale factors.

figuremib: Integer4 expression (input)

 Specifies the MIB number of the figure image list entity.

G-112 UPL Revision 6.0

Database Format

MSubrecTX

Type

Intrinsic Procedure Database Access

Purpose

Modifies the contents of a TX type subrecord. The TX subrecord holds the
actual text of a text string. Use this procedure when you want to change
information about text, dimension, label, MView, curve, and surface entities
in the PDF portion of the part database.

WARNING: This procedure is for advanced users only. Incorrect use could

damage or destroy your part database.

Syntax

MSubrecTX(mib, occur, error, textstring)

Parameters

mib: Integer4 expression (input) Specifies the MIB number of the

entity that contains the TX subrecord.

occur: Integer expression (input)

Specifies which occurrence of the TX subrecord to modify.
Use this when there is one or more TX subrecord for a given
entity. The occurrences start at one and increase with each
additional occurrence. lf a specified occurrence of the
subrecord does not exist, an error code of three is returned in

the error parameter.

Programming Tip: To call this procedure, give the MIB
number for the entity and the first occurrence of the subrecord
you want to access. Subsequent calls with the same MIB

number, and a negative one for the occur parameter,

automatically access the next TX subrecord. An error three is

returned if there are no more TX subrecords.This

programming tip is faster than incrementing, the occur
parameter for each occurrence of the subrecord.

G-113 Database Format

Database Format

error: Integer variable (input/output) Returns the error condition:

 0 no errors were found.
 1 an IO error was found.
 3 the subrecord was not found.
 4 an invalid MIB number was given.

textstring: String expression (input) Specifies the text string to be

 modified.

G-114 UPL Revision 6.0

Database Format

MSubrecVN

Type

Intrinsic Procedure Database Access

Purpose

Modifies the contents of a VN type subrecord. The VN subrecord holds
data about a defined view. Note that there is no entity record and therefore
no VN subrecord for Personal Designer's six predefined views. Use this
procedure when you want to change information about a view entity in the
PDF portion of the part database.

WARNING: This procedure is for advanced users only. Incorrect use could
damage or destroy your part database.

Syntax

MSubrecVN(mib, occur, error, transform(1))

Parameters

mib: Integer4 expression (input)

 Specifies the MIB number of the entity that contains the
 VN subrecord.

occur: Integer expression (input)

 Specifies which occurrence of the VN subrecord to modify. If
 there is one or more VN subrecord for a given entity, use this
 parameter to specify the particular subrecord. The occurrenees
 start at one and increase with each additional occurrence. lf a
 specified occurrence of the subrecord does not exist, an error

 code of three is returned in the error parameter.

 Programming Tip: To call this procedure, give the MIB
 number for the entity and the first occurrence of the subrecord
 you want to access. Subsequent calls with the same MIB

 number, and a negative one for the occur parameter, will

 automatically access the next TX subrecord. An error three
 will be returned if there are no more TX subrecords. Using

 this programming tip is faster than incrementing the occur
 parameter for each occurrence of the subrecord.

G-115 Database Format

Database Format

error: Integer variable (input/output)

 This parameter returns the error condition:

 0 no errors were found.
 1 an IO error was found.
 3 the subrecord was not found.
 4 an invalid MIB number was given.

transform: Real array of 15 elements (input/output)

 Specifies the view transformation matrix. Only the first nine
 elements of transform are used. The offset and scaling factors
 are not modified.

G-116 UPL Revision 6.0

Database Format

MSubrecXH

Type

Intrinsic Procedure Database Access

Purpose

Modifies the contents of an XH type subrecord. The XH subrecord holds
data about cross-hatch lines. Use this procedure when you want to change
information about cross-hatch line entities in the PDF portion of the part
database.

WARNING: This procedure is for advanced users only. Incorrect use could
damage or destroy your part database.

Syntax

MSubrecXH(mib, occur error, endpoints, npnts)

Parameters

mib: Integer4 expression (input)

 Specifies the MIB number of the entity that contains the
 XH subrecord.

occur: Integer expression (input)

 Specifies which occurrence of the XH subrecord to modify. lf
 there is one or more XH subrecord for a given entity, use this
 parameter to specify the particular subrecord. The occurrences
 start at one and increase with each additional occurrence. lf a
 specified occurrence of the subrecord does not exist, an error

 code of three is returned in the error parameter.

 Programming Tip: To call this procedure, give the MIB
 number for the entity and the first occurrence of the subrecord
 you want to access. Subsequent calls with the same MIB

 number, and a negative one for the occur parameter, will

 automatically access the next XH subrecord. An error three
 will be returned if there are no more XH subrecords. Using

 this programming tip is faster than incrementing the occur
 parameter for each occurrence of the subrecord.

G-117 Database Format

Database Format

error: Integer variable (input/output)

 This parameter returns the error condition:

 0 no errors were found.
 1 an IO error was found.
 3 the subrecord was not found.
 4 an invalid MIB number was given.

endpoints: Coordinate array of npnts elements (input/output)

 Specifies the endpoints of the cross-hatch lines. This
 parameter contains pairs of endpoints rather than the
 cross-hatch boundaries.

npnts: Integer expression (input)

 Specifies the number of endpoints in the endpoints parameter.

 The maximum number of lines allowed is 500; and therefore
 1.000 endpoints for each cross-hatch area. This should be an
 even number since the points are pairs.

G-118 UPL Revision 6.0

Database Format

MSubrecXN

Type

Intrinsic Procedure Database Access

Purpose

Modifies the contents of an XN type subrecord. The XN subrecord holds the
vertices of a string. A string consists of two or more line segments. Use this
procedure when you want to change information about a string, label, arrow,
dimension, cross-hateh, MView, curve, or surface entity in the PDF portion of
the part database.

WARNING: This procedure is for advanced users only. Incorrect use could
damage or destroy your part database.

Syntax

MSubrecXN(mib, occur, error ,vertices(1), nvert)

Parameters

mib: Integer4 expression (input)

 Specifies the MIB number of the entity that contains the
 XN subrecord.

occur: Integer expression (input)

 Specifies which occurrence of the XN subrecord to modify. lf
 there is one or more XN subrecord for a given entity, use this
 parameter to specify the particular subrecord. The occurrences
 start at one and increase with each additional occurrence. lf a
 specified occurrence of the subrecord does not exist, an error

 code of three is returned in the error parameter.

 Programming Tip: To call this procedure, give the MIB
 number for the entity and the first occurrence of the subrecord
 you want to access. Subsequent calls with the same MIB

 number, and a negative one for the occur parameter, will

 automatically access the next XN subrecord. An error three
 will be returned if there are no more XN subrecords. Using

 this programming tip is faster than incrementing the occur
 parameter for each occurrence of the subrecord.

G-119 Database Format

Database Format

error: Integer variable (input/output)

 This parameter returns the error condition:

 0 no errors were found.
 1 an IO error was found.
 3 the subrecord was not found.
 4 an invalid MIB number was given.

vertices: Coordinate array of nvert elements (input/output)

 Specifies string vertices in model coordinates. The order of
 the vertices in this array is the order in which the string was
 created.

nvert: Integer expression (input)

 This is the number of vertices in the vertices parameter.

G-120 UPL Revision 6.0

Database Format

MSubrecXZ

Type

Intrinsic Procedure Database Access

Purpose

Modifies the contents of an XZ type subrecord. 'Me XZ subrecord holds the
endpoints of a line. Use this procedure when you want to change information
about a line entity in the PDF portion of the part database.

WARNING: This procedure is for advanced users only. Incorrect use could

damage or destroy your part database.

Syntax

MSubrecXZ(mib, occur, error, pnt1, pnt2)

Parameters

mib: Integer4 expression (input)

 Specifies the MIB number of the entity that contains the
 XZ subrecord.

occur: Integer expression (input) Specifies which occurrence of the

 XZ subrecord to modify. If there is one or more XZ subrecord

 for a given entity, use occur to specify the particular subrecord.

 The occurrences start at one and increase with each additional
 occurrence. lf a specified occurrence of the subrecord does not

 exist, an error code of three is returned in the error parameter.

 Programming Tip: To call this procedure, give the MIB
 number for the entity and the first occurrence of the subrecord
 you want to access. Subsequent calls with the same MIB

 number, and a negative one for the occur parameter, will

 automatically access the next XN subrecord. An error three
 will be returned if there are no more XN subrecords. Using

 this programming tip is faster than incrementing the occur
 parameter for each occurrence of the subrecord.

error: Integer variable (input/output) Returns the error condition:

0 no errors were found.
1 an IO error was found.
3 the subrecord was not found.
4 an invalid MIB number was given.

G-121 Database Format

Database Format

pnt1: Coordinate expression (input)

 Specifies the first endpoint of the line in model coordinates.

pnt2: Coordinate expression (input)

 Specifies the second endpoint of the line in model coordinates.

G-122 UPL Revision 6.0

Database Format

PutSr

Type

Intrinsic Procedure Database Access

Purpose

This procedure puts, or adds, a database subrecord that consists of only
integer data to the PDF portion of the database.

WARNING: This procedure is for advanced users only. Improper use could
damage or destroy your part database.

Syntax

PutSr(mib, snype, nbytes, buf(1), error)

Parameters

mib: Integer4 expression (input)

 Specifies the MIB number of the entity to put the new
 subrecord on.

srtype: String expression of 2 charaeters (input)

 Specifies the two-character subrecord type.

nbyte: Integer expression (input)

 Specifies the number of bytes of valid data in buf for the new

 subrecord.

buf: String expression (input)

 This buffer specifies the new subrecord data.

error: Integer variable (input/output) Returns the error condition:

 0 no errors were found.
 1 an IO error was found.
 4 an invalid MIB number was given.

G-123 Database Format

Database Format

PutsrC

Type

Intrinsic Procedure Database Access

Purpose

Puts, or adds, a database subrecord that consists of only coordinate data
to the PDF portion of the database. This procedure is similar to the PutSr
procedure, except that no variable basing or data type conversion is
necessary.

There are two ways to use the PutSrC procedure:

1. The first is for adding a subrecord to an existing entity.

2. The second is for adding a whole entity to the database. In this latter
case, you must first make a call to the AddEnt intrinsic procedure to
set up the MIB portion of the database. Then you make calls to "put"
or write database subrecords to the end of the PDF portion of the
database.

WARNING: This procedure is for advanced users onty. Improper use could
damage or destroy your part database.

Syntax

PutSrC(mib, srtype, nbytes, cbuf(1), error)

Parameters

mib: Integer4 expression (input) Specifies the MIB number of the

 entity to put the new subrecord on.

srtype: String expression of 2 characters (input) Specifies the

 two-character subrecord type.

nbytes: Integer expression (input) Specifies the number of bytes of

 valid data in cbuf for the new subrecord.

G-124 UPL Revision 6.0

Database Format

PutsrI

Type

Intrinsic Procedure Database Access

Purpose

This procedure puts, or adds, a database subrecord that consists of only
integer data to the PDF portion of the database. This procedure is similar
to the PutSr procedure except that no variable basing or data type
conversion is necessary.

There are two ways to use the PutSrl procedure:

1. The first way is for adding a subrecord to an existing entity.

2. The second is for adding a whole entity to the database. In this case,
you must first make a call to the AddEnt intrinsic procedure to set
up the MIB portion of the database. Then you make calls to "put" or
write database subrecords to the end of the PDF portion of the
database.

WARNING: This procedure is for advanced users only. Improper use could

damage or destroy your part database.

Syntax

PutSrl(mib, srtype, nbytes, ibuf(1), error)

Parameters

mib: Integer4 expression (input)

 Specifies the MIB number of the entity to put the new
 subrecord on.

srtype: String expression of 2 characters (input)

 Specifies the two-character subrecord type.

nbytes: Integer expression (input)

 Specifies the number of bytes of valid data in ibuf for the new

 subrecord.

ibuf: Integer array of nbytes/ 2 elements (input/output) This buffer

specifies the new subrecord data. The maximum buffer size is
6.000 elements.

G-125 Database Format

Database Format

error: Integer variable (input/output) Returns the error condition:

 0 no errors were found.
 1 an IO error was found.
 4 an invalid MIB number was given.

G-126 UPL Revision 6.0

Database Format

PutSrR

Type

Intrinsic Procedure Database Access

Purpose

Puts, or adds, a database subrecord that consists of only real data to the
PDF portion of the database. This procedure is similar to the PutSr
procedure except that no variable basing or data type conversion is
necessary.

There are two ways to use the PutSrR procedure:

1. The first way is for adding a subrecord to an existing entity.

2. The second is for adding a whole entity to the database. In this case,
you must first make a call to the AddEnt intrinsic procedure to set up
the MIB portion of the database. Then you make calls to "put" or write
database subrecords to the end of the PDF portion of the database.

WARNING: This procedure is for advanced users only. Improper use could
damage or destroy your part database.

Syntax

PutSrR(mib, srtype, nbytes, rbuf(1), error)

Parameters

mib: Integer4 expression (input)

 Specifies the MIB number of the entity to put the new
 subrecord on.

srtype: String expression of 2 characters (input)

 Specifies the two-character subrecord type.

nbytes: Integer expression (input)

 Specifies the number of bytes of valid data in rbuf for the new

 subrecord.

G-127 Database Format

Database Format

PutsrS

Type

Intrinsic Procedure Database Access

Purpose

Puts, or adds, a database subrecord that consists of only string data to
the PDF portion of the database. This procedure is similar to the PutSr
procedure except that no variable basing or data type conversion is
necessary.

There are two ways to use the PutSrS procedure:

1. The first way is for adding a subrecord to an existing entity.

2. The second is for adding a whole entity to the database. In the latter

case, you must first make a call to the AddEnt intrinsic procedure to
set up the MIB portion of the database. Then you make calls to "put"
or write database subrecords to the end of the PDF portion of the
database.

WARNING: This procedure is for advanced users only. Improper use

could damage or destroy your part database.

Syntax

PutSrS(mib, srtype, nbytes, sbuf, error)

Parameters

mib: Integer4 expression (input)

 Specifies the MIB number of the entity to put the new
 subrecord on.

srtype: String expression of 2 characters (input)

 Specifies the two-character subrecord type.

nbytes: Integer expression (input)

 Specifies the number of bytes of valid data in sbuf for the new

 subrecord. lt is this parameter and not the sbuf.LENGTH

 attribute that defines how many bytes are put in the subrecord.

sbuf: String variable of nbytes characters (input/output)

 This buffer specifies the new subrecord data. The maximum
 buffer size is 12.000 characters.

G-128 UPL Revision 6.0

Database Format

error: Integer variable (input/output)

 This parameter returns the error condition:

 0 no errors were found.
 1 an IO error was found.
 4 an invalid MIB number was given.

G-129 Database Format

Database Format

ReadEnt

Type

Intrinsic Procedure Database Access

Purpose

Returns MIB information for an entity.

Syntax

ReadEnt (mib, mdata(1))

Parameters

mib: Integer4 expression (input)

 Specifies the entity number to query.

mdata: Integer array of 8 elements (input/output)

 This array returns entity index data:

 mdata(1) entity type; if less than 0 this is an

 erased entity.

 mdata(2) low word of PDF pointer.

 mdata(3) high word of PDF pointer.

 mdata(4) layer entity is on.

 mdata(5) view of visibility.

 mdata(6) group number.

 mdata(7) font number

 mdata(8) color number.

G-130 UPL Revision 6.0

Database Format

RSubrecAC

Type

Intrinsic Procedure Database Access

Purpose

Reads the contents of an AC type subrecord. The AC subrecord holds
data about an arc entity.

WARNING: This procedure is for advanced users only.

Syntax

RSubrecAC(mib, occur, error, transform(1), radius, abeg, aend)

Parameters

mib: Integer4 expression (input)

 Specifies the MIB number of the entity that contains the AC
 subrecord. A string consists of one or more line segments.

occur: Integer expression (input)

 Specifies which occurrence of the AC subrecord to modify. lf
 there is one or more AC subrecord for a given entity, use this
 parameter to specify the particular subrecord. The occurrenees
 start at one and increase with each additional occurrence. lf a
 specified occurrence of the subrecord does not exist, an error

 code of three is returned in the error parameter.

 Programming Tip: To call this procedure, give the MIB
 number for the entity and the first occurrence of the subrecord
 you want to access. Subsequent calls with the same MIB

 number, and a negative one for the occur parameter, will

 automatically access the next AC subrecord. An error three
 will be returned if there are no more AC subrecords. Using

 this programming tip is faster than incrementing the occur
 parameter for each occurrence of the subrecord.

error: Integer variable (input/output) Returns the error condition:

 0 no errors were found.
 1 an IO error was found.
 3 the subrecord was not found.
 4 an invalid MIB number was given.

G-131 Database Format

Database Format

transform: Real array of 12 elements (input/output) Returns the arc's view

transform. This transformation matrix defines the plane which the
arc lies in. Usually, this is the view the are was created in.
Elements 10, 11, and 12 are the origin of the arc.

radius: Real variable (input/output) This returns the radius of the arc

 in database units.

abeg: Real variable (input/output)

 Returns the beginning angle of the arc in radians. Angle zero
 starts at the X-axis and increases counterclockwise. The
 X-axis is defined by the arc's view transform.

aend: Real variable (input/output)

 This returns the ending angle of the arc in radians. Angle zero
 starts at the X-axis and increases counterclockwise. The
 X-axis is defined by the arc's view transforrn.

G-132 UPL Revision 6.0

Database Format

RSubrecAP

Type

Intrinsic Procedure Database Access

Purpose

Reads the contents of an AP type subrecord. The AP subrecord holds
data about partial arcs used in angular dimensions.

WARNING: This procedure is for advanced users only.

Syntax

RSubrecAP(mib, occur, error, org, radius1, abeg1, aend1,

 radius2, abeg2, aend2)

Parameters

mib: Integer4 expression (input) Specifies the MIB number of the

 entity that contains the AP subrecord.

occur: Integer expression (input) Specifies which occurrence of the

 AP subrecord to modify. If there is one or more AP subrecord
 for a given entity, use this parameter to specify the particular
 subrecord. The occurrences start at one and increase with each
 additional occurrence. lf a specified occurrence of the
 subrecord does not exist, an error code of three is returned in

 the error Parameter.

 Programming Tip: To call this procedure, give the MIB
 number for the entity and the first occurrence of the subrecord
 you want to access. Subsequent calls with the same MIB

 number, and a negative one for the occur parameter, will

 automatically access the next AP subrecord. An error three
 will be retumed if there are no more AP subrecords. Using

 this programming tip is faster than incrementing the occur
 parameter for each subrecord occurrence.

error: Integer variable (input/output) Returns the error condition:

 0 no errors were found.
 1 an IO error was found.
 3 the subrecord was not found.
 4 an invalid MIB number was given.

G-133 Database Format

Database Format

org: Coordinate variable (input/output) This returns the origin of

 the arc(s) in model coordinates.

radius1: Real variable (input/output) This returns the radius of the first

 arc.

abeg1: Real variable (input/output)

 This returns the beginning angle of the first arc in radians.
 Angle zero starts at the X-axis and increases counterclockwise.
 The X-axis is defined by the are's view transform.

aend1: Real variable (input/output) This returns the ending angle of

 the first arc in radians. Angle zero starts at the X-axis and
 increases counterclockwise. The X-axis is defined by the arc's
 view transform.

radius2: Real variable (input/output) Returns the radius of the second

 arc in database units. The default is inches.

abeg2: Real variable (input/output) Returns the beginning angle of

 the second arc.

aend2: Real variable (input/output) Returns the ending angle of the

 second arc in radians. Angle zero starts at the X-axis and
 increases counterclockwise. The X-axis is defined by the arc's
 view transform.

G-134 UPL Revision 6.0

Database Format

RSubrecDS

Type

Intrinsic Procedure Database Access

Purpose

Reads the contents of a DS type subrecord. The DS subrecord holds
data about the display image that was saved in the Personal Designer
SAVE IMAGE command.

WARNING: This procedure is for advanced users only.

Syntax

RSubrecDS(mib, occur, error, extents(1), scrscl, viewno, dispno)

Parameters

mib: Integer4 expression (input)

 Specifies the MIB number of the entity that contains the DS
 subrecord.

occur: Integer expression (input)

 Specifies which occurrence of the DS subrecord to modify. If
 there is one or more DS subrecord for a given entity, use this
 parameter to specify the particular subrecord. The occurrences
 start at one and increase with each additional occurrence. lf a
 specified occurrence of the subrecord does not exist, an error

 code of three is returned in the error parameter.

 Programming Tip: To call this procedure, give the MIB
 number for the entity and the first occurrence of the subrecord
 you want to access. Subsequent calls with the same MIB

 number, and a negative one for the occur parameter, will

 automatically access the next DS subrecord. An error three
 will be returned if there are no more DS subrecords. Using

 this programming tip is faster than incrementing the occur
 parameter for each occurrence of the subrecord.

G-135 Database Format

Database Format

error: Integer variable (input/output)

 This parameter returns the error condition:

 0 no errors were found.
 1 an IO error was found.
 3 the subrecord was not found.
 4 an invalid MIB number was given.

extents: Real array of 4 elements (input/output)

 Returns the maximum and minimum values used in a display
 image. They are given as X-minimum and maximum
 followed by Y-minimum and maximum.

scrscl: Real variable (input/output)

 Returns the display screen scale.

viewno: Integer variable (input/output)

 Returns the view number associated with the display image.

dispno: Integer variable (input/output)

 Returns the display image number.

G-136 UPL Revision 6.0

Database Format

RSubrecEX

Type

Intrinsic Procedure Database Access

Purpose

Reads the contents of an EX type subrecord. The EX subrecord holds
data about the extents of a part or figure in 3D space.

WARNING: This procedure is for advanced users only.

Syntax

RSubrecEX(mib, occur, error, extents (1))

Parameters

mib: Integer4 expression (input)

 Specifies the MIB number of the entity that contains the
 EX subrecord.

occur: Integer expression (input)

 Specifies which occurrence of the EX subrecord to modify. If
 there is one or more EX subrecord for a given entity, use this
 parameter to specify the particular subrecord. The occurrences
 start at one and increase with each additional occurrence. lf a
 specified occurrence of the subrecord does not exist, and error

 code of three is returned in the error parameter.

 Programming Tip: To call this procedure, give the MIB
 number for the entity and the first occurrence of the subrecord
 you want to access. Subsequent calls with the same MIB
 number, and a negative one subrecord. An error three will be
 returned if there are no more EX subrecords. using this

 programming tip is faster than incrementing the occur
 parameter for each occurrence of the subrecord.

error: Integer variable (input/output) Returns the error condition:

 0 no errors were found.
 1 an IO error was found.
 3 the subrecord was not found.
 4 an invalid MIB number was given.

G-137 Database Format

Database Format

extents: Real array of 24 elements (input/output)

 The extents parameter returns the range of X, Y, and Z values

 used in a part or figure. This parameter can be used in two
 ways.

 1. The first holds the eight X, Y, and Z values that define the

corners of an imaginary cube which surrounds all part or
figure geometry. This method is used primarily by
Personal Designer.

 2. The second way, used by surfacing in Personal Designer,
 holds the six minirnum and maximum values used by any
 entity in the database. These are specified in the following
 order: minimum x, maximum X, minimum Z, maximum Z.

The same imaginary cube can be ereated by generating
planes normal to XYZ areas and passing through the six
points.

G-138 UPL Revision 6.0

Database Format

RSubrecIL

Type

Intrinsic Procedure Database Access

Purpose

Reads the contents of an IL type subrecord. The IL subrecord holds data
about a figure image list to be inserted in the current part.

WARNING: This procedure is for advanced users only.

Syntax

RSubreelL(mib, occur, error, figname, mib, entcount,

 figdate, figtime)

Parameters

mib: Integer4 expression (input) Specifies the MIB number of the

 entity that contains the IL subrecord.

occur: Integer expression (input) Specifies which occurrence of the

 IL subrecord to modify. lf there is one or more IL subrecord
 for a given entity, use this parameter to specify the particular
 subrecord. The occurrences start at one and increase with each
 additional occurrence. lf a specified occurrence of the
 subrecord does not exist, an error code of three is returned in

 the error parameter.

 Programming Tip: To call this procedure, give the MIB
 number for the entity and the first occurrence of the subrecord
 you want to access. Subsequent calls with the same MIB

 number, and a negative one for the occur parameter, will

 automatically access the next IL subrecord. An error three will
 be returned if there are no more IL subrecords. Using this

 programming tip is faster than incrementing the occur
 parameter for each occurrence of the subrecord.

G-139 Database Format

Database Format

error: Integer variable (input/output)

 This parameter returns the error condition:

 0 no errors were found.
 1 an IO error was found.
 3 the subrecord was not found.
 4 an invalid MIB number was given.

figname: String variable of 64 characters (input/output)

 Returns the figure file name including the full path narne.

mib: Integer4 variable (input/output)

 Returns the MIB number of the first entity in the figure image
 list.

entcount: Integer variable (input/output)

 Retums the number of entities in the figure starting with the

 mib parameter.

figdate: Integer variable (input/output)

 Returns the system file date of the figure part file.

figtime: Integer variable (input/output)

 Retums the system file time of the figure part file.

G-140 UPL Revision 6.0

Database Format

RsubrecL1

Type

Intrinsic Procedure Database Access

Purpose

Reads the contents of an L 1 type subrecord. The L 1 subrecord holds
data about dimension extension line one in a dimension entity.

WARNING: This procedure is for advanced users only.

Syntax

RsubrecL1(mib, occur, error, pnt1, pnt2)

Parameters

mib: Integer4 expression (input) Specifies the MIB number of the

 entity that contains the L1 subrecord.

occur: Integer expression (input) Specifies which occurrence of the

 L1 subrecord to modify. lf there is one or more L1 subrecord
 for a given entity, use this parameter to specify the particular
 subrecord. The occurrences start at one and increase with each
 additional occurrence. lf a specified occurrence of the
 subrecord does not exist, an error code of three is returned in

 the error parameter.

 Programming Tip: To eall this procedure, give the MIB
 number for the entity and the first occurrence of the subrecord
 you want to access. Subsequent calls with the same MIB

 number, and a negative one for the occur parameter, will

 automatically access the next L1 subrecord. An error three
 will be returned if there are no more L1 subrecords. Using this

 programming tip is faster than incrementing the occur

 parameter for each occurrence of the subrecord.

error: Integer variable (input/output) Returns the error condition:

 0 no errors were found.
 1 an IO error was found.
 3 the subrecord was not found.
 4 an invalid MIB number was given.

G-141 Database Format

Database Format

pnt1: Coordinate variable (input/output) Returns the first endpoint

 of the extension line in model coordinates.

pnt2: Coordinate variable (input/output)

 Returns the second endpoint of the extension line in model
 coordinates.

G-142 UPL Revision 6.0

Database Format

RSubrecL2

Type

Intrinsic Procedure Database Access

Purpose

Reads the contents of an L2 type subrecord. The L2 subrecord holds
data about dimension extension line two in a dimension entity.

WARNING: This procedure is for advanced users only.

Syntax

RSubrecL2(mib, occur, error pnt1, pnt2)

Parameters

mib: Integer4 expression (input)

 Specifies the MIB number of the entity that contains the
 L2 subrecord.

occur: Integer expression (input)

 Specifies which occurrence of the L2 subrecord to modify. lf
 there is one or more L2 subrecord for a given entity, use this
 parameter to specify the particular subrecord. The occurrences
 start at one and increase with each additional occurrence. lf a
 specified occurrence of the subrecord does not exist, an error

 code of three is returned in the error parameter.

 Programming Tip: To call this procedure, give the MIB
 number for the entity and the first occurrence of the subrecord
 you want to access. Subsequent calls with the same MIB

 number, and a negative one for the occur parameter, will

 automatically access the next L2 subrecord. An error three
 will be returned if there are no more L2 subrecords. Using this

 programming tip is faster than inerementing the occur
 parameter for each occurrence of the subrecord.

G-143 Database Format

Database Format

error: Integer variable (input/output)

 This parameter returns the error condition:

 0 no errors were found.
 1 an IO error was found.
 3 the subrecord was not found.
 4 an invalid MIB number was given.

pnt1: Coordinate variable (input/output)

 Returns the first endpoint of the extension line in model
 coordinates.

pnt2: Coordinate variable (input/output)

 Retums the second endpoint of the extension line in model
 coordinates.

G-144 UPL Revision 6.0

Database Format

RSubrecPA

Type

Intrinsic Procedure Database Access

Purpose

Reads the contents of a PA type subrecord. The PA subrecord holds
data about entity properties on an entity.

WARNING: This procedure is for advanced users only.

Syntax

RSubrecPA(mib, occur, error, pname, ptype, pval)

Parameters

mib: Integer4 expression (input)

 Specifies the MIB number of the entity that contains the
 PA subrecord.

occur: Integer expression (input)

 Specifies which occurrence of the PA subrecord to modify. lf
 there is one or more PA subrecord for a given entity, use this
 parameter to specify the particular subrecord. The occurrenees
 start at one and increase with each additional occurrence. If a
 specified occurrence of the subrecord does not exist, an error
 code of three is returned in the error parameter.
 Programming Tip: To call this procedure, give the MIB
 number for the entity and the first occurrence of the subrecord
 you want to access. Subsequent calls with the same MIB

 number, and a negative one for the occur parameter, will

 automatically access the next PA subrecord. An error three
 will be returned if there are no more PA subrecords. Using this

 programming tip is faster than incrementing the occur
 parameter for each occurrence of the subrecord.

G-145 Database Format

Database Format

error: Integer variable (input/output)

 This parameter returns the error condition:

 0 no errors were found.
 1 an IO error was found.
 3 the subrecord was not found.
 4 an invalid MIB number was given.

pname: String variable of 8 characters (input/output)

 Retums the property name.

ptype: String variable of 7 characters (input/output)

 Returns the property type.

pval: String variable of 100 characters (input/output)

 Retums the property value.

G-146 UPL Revision 6.0

Database Format

RSubrecPX

Type

Intrinsic Procedure Database Access

Purpose

Reads the contents of a PX type subrecord. The PX subrecord holds
data about a point.

WARNING: This procedure is for advanced users only.

Syntax

RSubrecPX(mib, occur, error, pnt)

Parameters

mib: Integer4 expression (input) Specifies the MIB number of the

 entity that contains the PX subrecord.

occur: Integer expression (input) Specifies which occurrence of the

 PX subrecord to modify. lf there is one or more PX subrecord
 for a given entity, use this parameter to specify the subrecord.
 The occurrences start at one and inerease with each additional
 occurrence. If a specified occurrence of the subrecord does not

 exist, an error code of three is returned in the error parameter.

 Programming Tip: To call this procedure, give the MIB
 number for the entity and the first occurrence of the subrecord
 you want to access. Subsequent calls with the same MIB

 number, and a negative one for the occur parameter, will

 automatically access the next PX subrecord. An error three
 will be retumed if there are no more PX subrecords. Using

 this programming tip is faster than incrementing the occur
 parameter for each occurrence of the subrecord.

error: Integer variable (input/output) Returns the error condition:

 0 no errors were found.
 1 an IO error was found.
 3 the subrecord was not found.
 4 an invalid MIB number was given.

pnt: Coordinate variable (input/output) Returns the X, Y, Z

 locations of the point in model coordinates.

G-147 Database Format

Database Format

RSubrecTD

Type

Intrinsic Procedure Database Access

Purpose

Reads the contents of a TD type subrecord. The TD subrecord holds
data about text format and orientation used in text dimension labels
and MView entities.

WARNING: This procedure is for advanced users only.

Syntax

RSubrecTD(mib, occur, error, transform(1), height,

width, linesp, just(1))

Parameters

mib: Integer4 expression (input)

 Specifies the MIB number of the entity that contains the
 TD subrecord.

occur: Integer expression (input)

 Specifies which occurrence of the TD subrecord to modify. lf
 there is one or more TD subrecord for a given entity, use this
 parameter to specify the particular subrecord. The occurrences
 start at one and increase with each additional occurrence. If a
 specified occurrence of the subrecord does not exist, an error

 code of three is returned in the error parameter.

 Programming Tip: To call this procedure, give the MIB
 number for the entity and the first occurrence of the subrecord
 you want to access. Subsequent calls with the same MIB

 number, and a negative one for the occur parameter, will

 automatically access the next TD subrecord. An error three
 will be returned if there are no more TD subrecords. Using

 this programming tip is faster than incrementing the occur
 parameter for each occurrence of the subrecord.

G-148 UPL Revision 6.0

Database Format

error: Integer variable (input/output)

 This parameter returns the error condition:

 0 no errors were found.
 1 an IO error was found.
 3 the subrecord was not found.
 4 an invalid MIB number was given.

transform: Real array of 12 elements (input/output)

 Returns the text's view transforrn. This transformation matrix
 defines the plane the text lies in. Usually, this is the view the
 arc was created in. Elements 10, 11, and 12 are the origin of
 the arc. Only the first six elements of transform (X and Y), are
 used for the view transform.

height: Real variable (input/output)

 Returns the text height.

width: Real variable (input/output)

 Returns the text width.

linesp: Real variable (input/output)

 Returns the line spacing, in database units.

just: Integer array of 6 elements (input/output)

 This array returns text justification.

 Values for just(1) are:

 1 = left justification.
 2 = right justification.
 3 = center justification.

 just(2 - 6) are reserved; do not use.

G-149 Database Format

Database Format

RSubrecTF

Type

Intrinsic Procedure Database Access

Purpose

Reads the contents of a TF type subrecord. The TF subrecord holds data
about a figure instance which is inserted into a part.

WARNING: This procedure is for advanced users only.

Syntax

RSubrecTF(mib, occur, error, transform(1), figuremib)

Parameters

mib: Integer4 expression (input)
 Specifies the MIB number of the entity that contains the TF
 subrecord.
occur: Integer expression (input)
 Specifies which occurrence of the TF subrecord to modify. If
 there is one or more TF subrecord for a given entity, use this
 parameter to specify the particular subrecord. The occurrences
 start at one and increase with each additional occurrence. lf a
 specified occurrence of the subrecord does not exist, an error
 code of three is returned in the error parameter.
 Programming Tip: To call this procedure, give the MIB
 number for the entity and the first occurrence of the subrecord
 you want to access. Subsequent calls with the same MIB
 number, and a negative one for the occur parameter, will
 automatically access the next TF subrecord. An error three
 will be returned if there are no more TF subrecords. Using this
 programming tip is faster than incrementing the occur
 parameter for each occurrence of the subrecord.

G-150 UPL Revision 6.0

Database Format

error: Integer variable (input/output)

 This parameter returns the error condition:

 0 no errors were found.
 1 an IO error was found.
 3 the subrecord was not found.
 4 an invalid MIB number was given.

transform: Real array of 15 elements (input/output)

 The first nine elements of the transformation matrix return the
 figure viewing rnatrix. Elements 10, 11, and 12 are the figure
 origin. Elements 13, 14, and 15 return the figure's X, Y, and Z
 scale factors.

figuremib: Integer4 variable (input/output)

 Returns the MIB number of the figure definition entity.

G-151 Database Format

Database Format

RSubrecTX

Type

Intrinsic Procedure Database Access

Purpose

Reads the contents of a TX type subrecord. The TX subrecord holds the
text of a text string used in a text, dimension, MView, curve, or surface
entity.

WARNING: This procedure is for advanced users only.

Syntax

RSubrecTX(mib, occur, error, textstring)

Parameters

mib: Integer4 expression (input) Specifies the MIB number of the

 entity that contains the TX subrecord.

occur: Integer expression (input) Specifies which occurrence of the

 TX subrecord to modify. lf there is one or more TX subrecord
 for a given entity, use this parameter to specify the particular
 subrecord. The occurrences start at one and increase with each
 additional occurrence. If a specified occurrence of the
 subrecord does not exist, an error code of three is returned in

 the error parameter.

 Programming Tip: To call this procedure, give the MIB
 number for the entity and the first occurrence of the subrecord
 you want to access. Subsequent calls with the same MIB

 number, and a negative one for the occur parameter, will

 automatically access the next TX subrecord. An error three
 will be returned if there are no more TX subrecords. Using

 this programming tip is faster than inerementing the occur
 parameter for each occurrence of the subrecord.

error: Integer variable (input/output) Retums the error condition:

 0 no errors were found.
 1 an IO error was found.
 3 the subrecord was not found.
 4 an invalid MIB number was given.

textstring: String expression (input/output) Returns the text string.

G-152 UPL Revision 6.0

Database Format

RSubrecVN

Type

Intrinsic Procedure Database Access

Purpose

Reads the contents of a VN type subrecord. The VN subrecord holds
data about a defined view. Note that there is no entity records and
therefore no VN subrecords for the six predefined views.

WARNING: This procedure is for advanced users only.

Syntax

RSubrecVN(mib, occur, error, transform(1))

Parameters

mib: Integer4 expression (input) Specifies the MIB number of the

 entity that contains the VN subrecord.

occur: Integer expression (input) Specifies which occurrence of the

 VN subrecord to modify when more than one is present for a
 given entity. The occurrences start at one and increase with
 each additional occurrence. lf a specified occurrence of the
 subrecord does not exist, an error code of three is returned.
 Programming Tip: To call this procedure, give the MIB number
 for the entity and the first occurrence of the subrecord you want
 to access. Subsequent calls with the same MIB number, and a

 negative one for the occur pararneter, automatically access the

 next VN subrecord. An error three is returned if there are no
 more VN subrecords. Using this tip is faster than inerementing

 the occur parameter for each occurrence of the subrecord.

error: Integer variable (input/output) Returns the error condition:

 0 no errors were found.
 1 an IO error was found.
 3 the subrecord was not found.
 4 an invalid MIB number was given.

transform: Real array of 15 elements (input/output) Returns the view

 transformation matrix. Only the first nine elements of

 transform are used. The offset and scaling factors are not

 modified.

G-153 Database Format

Database Format

RSubrecXH

Type

Intrinsic Procedure Database Access

Purpose

Reads the contents of an XH type subrecord. The XH subrecord holds
data about cross-hatch lines used in cross-hatch entities.

WARNING: This procedure is for advanced users only.

Syntax

RSubrecXH(mib, occur, error, endpoints, npnts)

Parameters

mib: Integer4 expression (input)

 Specifies the MIB number of the entity that contains the XH
 subrecord.

occur: Integer expression (input)

 Specifies which occurrence of the XH subrecord to rnodify. lf
 there is one or more XH subrecord for a given entity, use this
 parameter to specify the particular subrecord. The occurrenees
 start at one and increase with each additional occurrence. lf a
 specified occurrence of the subrecord does not exist, an error

 code of three is returned in the error parameter.

 Programming Tip: To call this procedure, give the MIB
 number for the entity and the first occurrence of the subrecord
 you want to access. Subsequent calls with the same MIB

 number, and a negative one for the occur parameter, will

 automatically access the next XH subrecord. An error three
 will be returned if there are no more XH subrecords. Using

 this prograrnming tip is faster than incrementing the occur
 parameter for each occurrence of the subrecord.

G-154 UPL Revision 6.0

Database Format

error: Integer variable (input/output)

 This parameter returns the error condition:

 0 no errors were found.
 1 an IO error was found.
 3 the subrecord was not found.
 4 an invalid MIB number was given.

endpoints: Coordinate array of nvert elements (input/output)

 Returns the endpoints of the cross-hatch lines. This parameter
 contains pairs of endpoints rather than the cross-hatch
 boundaries.

npnts: Integer expression (input/output)

 This returns the number of endpoints in the endpoints
 parameter. The maximum number of lines returned is 500; and

 therefore 1.000 endpoints for each cross-hatch area.

G-155 Database Format

Database Format

RSubrecXN

Type

Intrinsic Procedure Database Access

Purpose

Reads the contents of an XN type subrecord. The XN subrecord holds the
vertices of a string used in a string, label, arrow, dimension, cross-hatch,
MView, curve, or surface entity. A string consists of two or more line
segments.

WARNING: This procedure is for advanced users only.

Syntax

RSubrecXN(mib, occur, error, vertices(1), nvert)

Parameters

mib: Integer4 expression (input)

 Specifies the MIB number of the entity that contains the
XN subrecord.

occur: Integer expression (input)

 Speeifies which occurrence of the XN subrecord to modify. If
 there is one or more XN subrecord for a given entity, use this
 parameter to specify the particular subrecord. The occurrences
 start at one and increase with each additional occurrence. lf a
 specified occurrence of the subrecord does not exist, an error

 code of three is returned in the error parameter.

 Programming Tip: To call this procedure, give the MIB
 number for the entity and the first occurrence of the subrecord
 you want to access. Subsequent calls with the same MIB

 number, and a negative one for the occur parameter, will

 automatically access the next XN subrecord. An error three
 will be returned if there are no more XN subrecords. Using

 this programming tip is faster than incrernenting the occur
 parameter for each occurrence of the subrecord.

G-156 UPL Revision 6.0

Database Format

error: Integer variable (input/output)

 This parameter returns the error condition:

 0 no errors were found.
 1 an IO error was found.
 3 the subrecord was not found.
 4 an invalid MIB number was given.

vertices: Coordinate array of nvert elements (input/output)

 Returns string vertices.

nvert: Integer variable (input/output)

 This returns the number of vertices in the vertices parameter.

G-157 Database Format

Database Format

RSubrecXZ

Type

Intrinsic Procedure Database Access

Purpose

Reads the contents of an XZ type subrecord in the PDF portion of the part
database. The XZ subrecord holds data about the endpoints of a line.

WARNING: This procedure is for advanced users only.

Syntax

RSubrecXZ(mib, occur, error, pnt1, pnt2)

Parameters

mib: Integer4 expression (input)

 Specifies the MIB number of the entity that contains the XZ
 subrecord.

occur: Integer expression (input)

 Specifies which occurrence of the XZ subrecord to modify. lf
 there is one or more XZ subrecord for a given entity, use this
 parameter to specify the particular subrecord. The occurrences
 start at one and increase with each additional occurrence. lf a
 specified occurrence of the subrecord does not exist, an error

 code of three is returned in the error parameter.

 Programming Tip: To call this procedure, give the MIB
 number for the entity and the first occurrence of the subrecord
 you want to access. Subsequent calls with the same MIB

 number, and a negative 1 for the occur parameter, will

 automatically access the next XZ subrecord. An error three
 will be returned if there are no more XZ subrecords. Using this

 programming tip is faster than incrementing the occur
 parameter for each occurrence of the subrecord.

G-158 UPL Revision 6.0

Database Format

error: Integer variable (input/output)

 Returns the error condition:

 0 no errors were found.
 1 an IO error was found.
 3 the subrecord was not found.
 4 an invalid MIB number was given.

pnt1: Coordinate variable (input/output)

 Returns the first endpoint of the line.

pnt2: Coordinate variable (input/output)

 Returns the second endpoint of the line.

G-159 Database Format

Database Format

WriteEnt

Type

Intrinsic Procedure Database Access

Purpose

Modifies entity index (or MIB) information. Note that the PDF pointer
cannot be modified. To add a new entity index, use AddEnt. See ReadEnt
for more information.

WARNING: This procedure is for advanced users only. Incorrect use could
damage or destroy your part database.

Syntax

WriteEnt(mib, mdata(1))

Parameters

mib: Integer4 expression (input)

 Specifies the entity MIB number of the entity to modify.

mdata: Integer array of 8 elements (input/output)

 Specifies entity index data:

 mdata(1) entity type; if less than 0, this will

 erase the entity.

 mdata(2) low word of PDF pointer; this value

 is not modified.

 mdata(3) high word of PDF pointer; this

 value is not modified.

 mdata(4) layer entity is on.

 mdata(5) view of visibility.

 mdata(6) group number.

 mdata(7) font number.

 mdata(8) color number.

G-160 UPL Revision 6.0

Database Format

WSubrecAC

Type

Intrinsic Procedure Database Access

Purpose

Writes an AC type subrecord to the PDF portion of the database. The AC
subrecord holds data about an arc entity. Write an AC subrecord when you
are adding a new entity to the database with the intrinsic procedure

AddEnt.

WARNING: This procedure is for advanced users only. Incorrect use could
damage or destroy your part database.

Syntax

WSubrecAC(mib, error, transform(1), radius, abeg, aend)

Parameters

mib: Integer4 expression (input) Specifies the MIB number of the

 entity that will contain the AC subrecord.

error: Integer variable (input/output)

 This parameter returns the error condition:

 0 no errors were found.
 1 an IO error was found.
 4 an invalid MIB number was given.

transform: Real array of 12 elements (input/output) Specifies the arc's

 view transform. This transformation matrix defines the plane
 which the arc lies in. Usually, this is the view the arc was
 created in. Elements 10, 11, and 12 are the origin of the arc.

radius: Real expression (input)

 Specifies the radius of the arc in database units.

abeg: Real expression (input)

 Specifies the beginning angle of the arc in radians. Angle zero
 starts at the X-axis and increases counterclockwise. The
 X-axis is defined by the arc's view transform.

aend: Real expression (input) Specifies the ending angle of the arc

 in radians. Angle zero starts at the X-axis and increases
 counterclockwise. The X-axis is defined by the arc's view
 transform.

G-161 Database Format

Database Format

WSubrecAP

Type

Intrinsic Procedure Database Access

Purpose

Writes an AP type subrecord to the PDF portion of the database. The AP
subrecord holds data about partial arcs used in angular dimensions. Write an
AP subrecord when you are adding a new angular dimension entity to the
database with the intrinsic procedure AddEnt.

WARNING: This procedure is for advanced users only. Incorrect use could
damage or destroy your part database

Syntax

WSubrecAP(mib, error, org, radius1, abeg1, aend1, radius2,

 abeg2, aend2)

Parameters

mib: Integer4 expression (input)

 Specifies the MIB number of the entity that will contain the
 AP subrecord.

error: Integer variable (input/output)

 This parameter returns the error condition:

 0 no errors were found.
 1 an IO error was found.
 4 an invalid MIB number was given.

org: Coordinate expression (input)

 Specifies the origin of the arc(s) in model coordinates.

radius1: Real expression (input)

 Specifies the radius of the first arc in database units.

abeg1: Real expression (input)

 Specifies the beginning angle of the first arc in radians. Angle
 zero starts at the X-axis and increases counterclockwise. The
 X-axis is defined by the arc's view transform.

G-162 UPL Revision 6.0

Database Format

aend1: Real expression (input)

 Specifies the ending angle of the first arc in radians. Angle
 zero starts at the X-axis and increases counterclockwise. The
 X-axis is defined by the arc's view transform.

radius2: Real expression (input)

 Specifies the radius of the second arc in database units.

abeg2: Real expression (input)

 Specifies the beginning angle of the second are in radians.
 Angle zero starts at the X-axis and increases counterclockwise.
 The X-axis is defined by the arc's view transform.

aend2: Real expression (input)

 Specifies the ending angle of the second are in radians. Angle
 zero starts at the X-axis and increases counterclockwise. The
 X-axis is defined by the arc's view transform.

G-163 Database Format

Database Format

WSubrecDS

Type

Intrinsic Procedure Database Access

Purpose

Writes a DS type subrecord to the PDF portion of the database. The DS
subrecord holds data about the display image that was saved in the
Personal Designer command SAVE IMAGE. Write a DS subrecord when
you are adding a new display image entity to the database with the intrinsic
procedure AddEnt.

WARNING: This procedure is for advanced users only. Ineorrect use could

damage or destroy your part database.

Syntax

WSubrecDS(mib, error, extents(1), scrscl, viewno, dispno)

Parameters

mib: Integer4 expression (input)

 Specifies the MIB number of the entity that will contain the
 DS subrecord.

error: Integer variable (input/output)

 This parameter returns the error condition:

 0 no errors were found.
 1 an IO error was found.
 4 an invalid MIB number was given.

extents: Real array of 4 elements (input/output)

 Specifies the maximum and minimum values used in a display
 image. They are given as X minimum and maximum
 followed by Y minimum and maximum.

scrscl: Real expression (input)

 Specifies the display image's screen scale.

viewno: Integer expression (input)

 Specifies the view number associated with the display image.

dispno: Integer expression (input)

 Specifies the display image number.

G-164 UPL Revision 6.0

Database Format

WSubrecEX

Type

Intrinsic Procedure Database Access

Purpose

Writes an EX type subrecord to the PDF portion of the database. The EX
subrecord holds data about the extents of a part or figure in 3D space. Write
an EX subrecord when you are adding new entities to the database with the
intrinsic procedure AddEnt.

WARNING: This procedure is for advanced users only. Incorrect use could
damage or destroy your part database.

Syntax

WSubrecEX(mib, error, extents(1))

Parameters

mib: Integer4 expression (input)

 Specifies the MIB number of the entity that will contain the
 EX subrecord.

error: Integer variable (input/output)

 This parameter returns the error condition:

 0 no errors were found.
 1 an IO error was found.
 4 an invalid MIB number was given.

extents: Real array of 24 elements (input/output)

 Specifies the range of X, Y, and Z values used in a drawing or
 figure. This parameter can be used in two ways.

 1 . The first holds the eight and X, Y, and Z values that define the
 corners of an imaginary cube which surrounds all part or

figure geometry. This method is used primarily by Personal
Designer.

 2. The second way, used with surfacing, specifies the six minimum
and maximurn values used by any entity in the database. These
are specified in the following order: minimum X, maximum X,
minimum Y, rnaximum Y, minimum Z, maximum Z. The same
imaginary cube can be created by generating planes normal to
X, Y, and Z axes and passing through the six points.

G-165 Database Format

Database Format

WSubrecIL

Type

Intrinsic Procedure Database Access

Purpose

Writes an IL type subrecord to the PDF portion of the database. The IL
subrecord holds data about a figure image that is to be inserted in the
current part. Write an IL subrecord when you are adding a new figure
image entity to the database with the intrinsic procedure AddEnt.

WARNING: This procedure is for advanced users only. Incorrect use could
damage or destroy your part database.

Syntax

WSubrecIL(mib, error, figname, figmib, entcount, figdate,

 figtime)

Parameters

mib: Integer4 expression (input)

 Specifies the MIB number of the entity that will contain the
 IL subrecord.

error: Integer variable (input/output)

 This parameter returns the error condition:

 0 no errors were found.
 1 an IO error was found.
 4 an invalid MIB number was given.

figname: String expression of 64 charaeters (input)

 Specifies the figure file name including the full path name.

figmib: Integer expression (input)

 Specifies the MIB number of the first entity in the figure image
 list.

entcount: Integer expression (input)

 Specifies the number of entities in the figure starting with the

 mib parameter.

G-166 UPL Revision 6.0

Database Format

figdate: Integer expression (input)

 Specifies the system file date of the figure part file. This is the
 date the file was last modified. See Appendix E, Internal Data
 Storage Format, for more information.

figtime: Integer expression (input)

 Specifies the system file time of the figure part file. This is the
 time the file was last modified. See Appendix E, Internal Data
 Storage Format, for more information.

G-167 Database Format

Database Format

WSubrecL1

Type

Intrinsic Procedure Database Access

Purpose

Writes an L1 type subrecord to the PDF portion of the database. The L 1
subrecord holds data about dimension extension line one. Write an LI
subrecord when you are adding a new dimension entity to the database
with the intrinsic procedure AddEnt.

WARNING: This procedure is for advanced users only. Incorrect use could
damage or destroy your part database.

Syntax

WsubrecL1(mib, error, pnt1, pnt2)

Parameters

mib: Integer4 expression (input)

 Specifies the MIB number of the entity that will contain the L1
 subrecord.

error: Integer variable (input/output)

 This parameter returns the error condition:

 0 no errors were found.
 1 an IO error was found.
 4 an invalid MIB nurnber was given.

pnt1: Coordinate expression (input)

 Specifies the first endpoint of extension line one.

pnt2: Coordinate expression (input)

 Specifies the second endpoint of extension line one.

G-168 UPL Revision 6.0

Database Format

WSubrecL2

Type

Intrinsic Procedure Database Access

Purpose

Writes an L2 type subrecord to the PDF portion of the database. The L2
subrecord holds data about dimension extension line two. Write an L2
subrecord when you are adding a new dimension entity to the database
with the intrinsic procedure AddEnt.

WARNING: This procedure is for advanced users only. Incorrect use could
damage or destroy your part database.

Syntax

WSubrecL2(mib, error, pnt1, pnt2)

Parameters

mib: Integer4 expression (input) Specifies the MIB number of the

 entity that will contain the L2 subrecord.

error: Integer variable (input/output) Returns the error condition:

 0 no errors were found.
 1 an IO error was found.
 4 an invalid MIB number was given.

pnt1: Coordinate expression (input)

 Specifies the first endpoint of extension line two.

pnt2: Coordinate expression (input)

 Specifies the second endpoint of extension line two.

G-169 Database Format

Database Format

WSubrecPA

Type

Intrinsic Procedure Database Access

Purpose

Writes a PA type subrecord to the PDF portion of the database. The PA
subrecord holds data about entity properties. Write a PA subrecord when
you are adding a new entity to the database with the intrinsic procedure
AddEnt. You can also use this procedure to add property subrecords to
existing entities.

WARNING: This procedure is for advanced users only. Incorrect use
could damage or destroy your part database.

Syntax

WSubrecPA(mib, error, pname, ptype, pval)

Parameters

mib: Integer4 expression (input) Specifies the MIB number of the

 entity that will contain the PA subrecord.

error: Integer variable (input/output) Returns the error condition:

 0 no errors were found.
 1 an IO error was found.
 4 an invalid MIB number was given.

pname: String expression of 8 characters (input)

 Specifies the property name.

ptype: String expression of 7 characters (input)

 Specifies the property type.

pval: String expression of 100 characters (input)

 Specifies the property value.

G-170 UPL Revision 6.0

Database Format

WSubrecPX

Type

Intrinsic Procedure Database Access

Purpose

Writes a PX type subrecord to the PDF portion of the database. The PX
subrecord holds data about the point. Write a PX subrecord when you are
adding a new point entity to the database with the intrinsic procedure
AddEnt.

WARNING: This procedure is for advanced users only. Incorrect use
could damage or destroy your part database.

Syntax

WSubrecPX(mib, error, pnt)

Parameters

mib: Integer4 expression (input) Specifies the MIB number of the

 entity that will contain the PX subrecord.

error: Integer variable (input/output) Returns the error condition:

 0 no errors were found.
 1 an IO error was found.
 4 an invalid MIB number was given.

pnt: Coordinate expression (input) Specifies the X, Y, and Z

 locations of the point in model coordinates.

G-171 Database Format

Database Format

WSubrecTD

Type

Intrinsic Procedure Database Access

Purpose

Writes a TD type subrecord to the PDF portion of the database. Ihe TD
subrecord holds data about text format and orientation. Note that it does
not hold the actual text itself, which is usually in a TX subrecord. Write a
TD subrecord when you are adding a new text, dimension, label, or
auxiliary entity to the database with the intrinsic procedure AddEnt.

WARNING: This procedure is for advanced users only. Incorrect use
could damage or destroy your part database.

Syntax

WSubreeTD(mib, error, transform(1), height, width, linesp,

 just(1))

Parameters

mib: Integer4 expression (input) Specifies the MIB number of the

 entity that will contain the TD subrecord.

error: Integer variable (input/output) Returns the error condition:

 0 no errors were found.
 1 an IO error was found.
 4 an invalid MIB number was given.

transform: Real array of 15 elements (input/output)

 Specifies the text's view transform. This transformation
 matrix defines the plane which the text lies in. Usually, this is
 the view the arc was created in. In TD subrecords, only
 elements 1 through 6 and 10 through 12 of the view transform
 are used. Elements 1 through 6 are the X and Y axes cosine.
 Elements 10 through 12 are the origin of the text.

height: Real expression (input) Specifies text height in database units.

width: Real expression (input)

 Specifies the text width in database units.

linesp: Real expression (input)

 Specifies line spacing, in database units.

G-172 UPL Revision 6.0

Database Format

just: Integer array of 6 elements (input/output) Specifies text

 justification. Values for just(1) are:

 1 = left justification.
 2 = right justification.
 3 = center justification,

 just(2) is an associativity flag for dimension text. Values are:

 1 has D4 subrecord.
 0 has no associativity

 just(3) is MView number

 just(4) is text font number

 just(5) is text slant angle

 just(6) is reserved; do not use.

G-173 Database Format

Database Format

WSubrecTF

Type

Intrinsic Procedure Database Access

Purpose

Writes a TF type subrecord to the PDF portion of the database. The TF
subrecord holds data about a figure which is inserted into a part. Write
a TF subrecord when you are adding a new figure instance entity to
the database with the intrinsic procedure AddEnt.

WARNING: This procedure is for advanced users only. Incorrect use could
damage or destroy your part database.

Syntax

WSubrecTF(mib, error, transform(1), figuremib)

Parameters

mib: Integer4 expression (input) Specifies the MIB number of the

 entity that will contain the TF subrecord.

error: Integer variable (input/output) Retums the error condition:

 0 no errors were found.
 1 an IO error was found.
 4 an invalid MIB number was given.

figuremib: Integer4 expression (input)

 Specifies the MIB number of the figure image list entity.

transform: Real array of 15 elements (input/output). The first nine

 elements of the transformation matrix specify the figure
 viewing matrix. Elements 10, 11, and 12 are the figure origin.
 Elements 13, 14, and 15 are the figure's X, Y, and Z scale
 factors.

G-174 UPL Revision 6.0

Database Format

WSubrecTX

Type

Intrinsic Procedure Database Access

Purpose

Writes a TX type subrecord to the PDF portion of the database. The TX
subrecord holds the actual text of a text string entity. Write a TX subrecord
when you are adding a new text, dimension, MView, curve, or surface entity
to the database with the intrinsic procedure AddEnt.

WARNING: This procedure is for advanced users only. Incorrect use could
damage or destroy your part database.

Syntax

WSubrecTX(mib, error, textstring)

Parameters

mib: Integer4 expression (input) Specifies the MIB number of the

 entity that will contain the TX subrecord.

error: Integer variable (input/output) Returns the error condition:

 0 no errors were found.
 1 an IO error was found.
 4 an invalid MIB number was given.

textstring: String expression (input) Specifies the text string to be

 modified.

G-175 Database Format

Database Format

WSubrecVN

Type

Intrinsic Procedure Database Access

Purpose

Writes a VN type subrecord to the PDF portion of the database. The VN
subrecord holds data about a defined view. Write a VN subrecord when
you are adding a new view entity to the database with the intrinsic
procedure AddEnt.

WARNING: This procedure is for advanced users only. Incorrect use
could damage or destroy your part database.

Syntax

WSubrecVN(mib, error transform(1))

Parameters

mib: Integer4 expression (input) Specifies the MIB number of the

 entity that will contain the VN subrecord.

error: Integer variable (input/output) Retums the error condition:

 0 no errors were found.
 1 an IO error was found.
 4 an invalid MIB number was given.

transform: Real array of 15 elements (input/output)

 Specifies the view transformation matrix. Only the first nine
elements of transform are used. The offset and scaling
factors are not written.

G-176 UPL Revision 6.0

Database Format

WSubrecXH

Type

Intrinsie Procedure Database Access

Purpose

Writes an XH type subrecord to the PDF portion of the database. The XH
subrecord holds data about cross-hatch lines. Write an XH subrecord when
you are adding a new cross-hatch entity to the database with the intrinsic
procedure AddEnt.

WARNING: This procedure is for advanced users only. Incorrect use
could damage or destroy your part database.

Syntax

WSubrecXH(mib, error, endpoints, npnts)

Parameters

mib: Integer4 expression (input)

 Specifies the MIB number of the entity that will contain the
 XH subrecord.

error: Integer variable (input/output)

 This parameter returns the error condition:

 0 no errors were found.
 1 an IO error was found.
 4 an invalid MIB number was given.

endpoints: Coordinate array of npnts elements (input/output)

 Specifies the endpoints of the cross-hatch lines. The contents
 of this parameter is pairs of endpoints rather than the
 cross-hatch boundaries.

G-177 Database Format

Database Format

WSubrecXN

Type

Intrinsic Procedure Database Access

Purpose

Writes an XN type subrecord to the PDF portion of the database. The XN
subrecord holds the vertices of a string entity. A string consists of two or
more line segments. Write an XN subrecord when you are adding a new
string, label, arrow, dimension, cross-hatch, MView, curve or surface entity
to the database with the intrinsic procedure AddEnt.

WARNING: This procedure is for advanced users only. Incorrect use could
damage or destroy your part database.

Syntax

WSubrecXN(mib, error, vertices(1), nvert)

Parameters

mib: Integer4 expression (input)

 Specifies the MIB number of the entity that will contain the
 XN subrecord.

error: Integer variable (input/output)

 This parameter returns the error condition:

 0 no errors were found.
 1 an IO error was found.
 4 an invalid MIB number was given.

vertices: Coordinate array of nvert elements (input/output)

 Specifies string vertiees. The order of the vertices in the array
 is the order in which the string is created.

nvert: Integer expression (input)

 Specifies the number of vertices in the vertices parameter.

G-178 UPL Revision 6.0

Database Format

WSubrecXZ

Type

Intrinsic Procedure Database Access

Purpose

Writes an XZ type subrecord to the PDF portion of the database. The XZ
subrecord holds data about the endpoints of a line. Write an XZ subrecord
when you are adding a new line entity to the database with the intrinsic
procedure AddEnt.

WARNING: This procedure is for advanced users only. Incorrect use
could damage or destroy your part database.

Syntax

WSubrecXZ(mib, error, pnt1, pnt2)

Parameters

mib: Integer4 expression (input)

 Specifies the MIB number of the entity that will contain the
 XZ subrecord.

error: Integer variable (input/output)

 This parameter returns the error condition:

 0 no errors were found.
 1 an IO error was found.
 4 an invalid MIB number was given.

pnt1: Coordinate expression (input)

 Specifies the first endpoint of the line.

pnt2: Coordinate expression (input)

 This parameter specifies the second endpoint of the line.

G-179 Database Format

Database Format

Examples for Direct Database Access

Example: CIRCLE.UPL

-- CIRCLE.UPL -- create a circle.
-- This program demonstrates direct database
-- access using UPL intrinsics. Note that a
-- circle contains the AC subrecord which has
-- it own UPL intrinsics.

Proc Main

 Const Integer ArcType = 3
 Integer ColorC, LayerC, VvisC, FontC, GroupC
 Integer4 Mib
 Integer DataBuffer(5)

 Integer Occur, Error, CPL
 Real Transform(15), RadiusC, ABeg, AEnd

 Coord Origin
 Integer NDigs

-- start of code --

-- First, create the MIB sub-record. Use system
-- default values for layer, color, etc.
-- The call to AddEnt actually adds the subrecord.

 SysVarI(l, ColorC)
 SysVarI(2, FontC)
 SysVarI(3, LayerC)
 SysVarI(1474, VvisC)
 If VvisC <> 0 then
 SysVarI(4, VvisC)
 Endif
 SysVarI(1333, GroupC)
 GroupC = GroupC - 1

G-180 UPL Revision 6.0

Database Format

 DataBuffer(1) = LayerC
 DataBuffer(2) = VvisC
 DataBuffer(3) = GroupC
 DataBuffer(4) = FontC
 DataBuffer(5) = ColorC

 AddEnt(ArcType, DataBuffer(1), Mib, Error)

-- Now create the PDF subrecord and add it to
-- the database. Prompt user for radius and
-- origin. Use current CPL. Note that origin,
-- orientation of circle, and scaling factors (not
-- used here) are all stored in Transform array.
-- WSubrecAC actually adds PDF subrecord.

 Accept RadiusC Prompt('Enter radius: ') NewLine

 SysVarI(12, CPL)
 GetCPL(CPL, TransForm(1))

 Print 'Dig center of circle ',
 GetDig(1, 1, Ndigs, Origin)
 Transform(10) = Origin.X
 Transform(11) = Origin.Y
 Transform(12) = Origin.Z

 ABeg = 0
 AEnd = TwoPio

 WSubrecAC(Mib, Error, Transform(1), RadiusC, \
 ABeg, AEnd)

 RpntEnt(Mib, 1, Error)

End Proc

G-181 Database Format

Database Format

Example: CHCIRCLE.UPL

-- CHCIRCLE.UPL -- change a circle.
-- This program demonstrates direct database
-- access using UPL intrinsics. Note that a
-- circle contains the AC subrecord which has
-- it own UPL intrinsics.

Proc Main

 Const Integer ArcType = 3
 Integer ColorC, LayerC, VvisC, FontC, GroupC
 Integer4 Mib(1)
 Integer DataBuffer(8)

 Integer Occur, Error, CPL
 Real Transform(15), RadiusC, ABeg, AEnd

 Coord Origin
 Integer NDigs, Iend

 Integer4 NEnts

-- start of code --

-- First, identify the circle using GetEnt. Only
-- allow cirlces to be digged.

 EntMask(0)
 EntMask(ArcType)
 Print 'Digitize circle: ',
 GetEnt(1, NEnts, Mib(1), IEnd)
 Print

-- Next, read the MIB sub-record using ReadEnt,
-- modify the data, and then modify the MIB
-- subrecord using WriteEnt.
-- Note that DataBuffer has different offsets
-- from the one used with AddEnt. Also, you could
-- access data directly in DataBuffer and not use
-- ColorC and LayerC.

G-182 UPL Revision 6.0

Database Format

 ReadEnt(Mib(1), DataBuffer(1))

 LayerC = DataBuffer(4)
 ColorC = DataBuffer(8)
 Print 'Circle color is ',ColorC,'.'
 Print 'Circle layer is ',LayerC,'.'
 Accept ColorC Prompt('New color: ') NewLine
 Accept LayerC Prompt('New layer: ') NewLine
 DataBuffer(4) = LayerC
 DataBuffer(8) = ColorC

 WriteEnt(Mib(1), DataBuffer(1))

-- Now read the PDF subrecord using RSubrecAC,
-- modify the data, and then modify the
-- subrecord with MSubrecAC.

 Occur = 1 RSubrecAC(Mib(1), Occur, Error,
 Transform(1), RadiusC, ABeg, AEnd)

 Print 'Current radius is ',RadiusC, '.'
 Accept RadiusC Prompt('New radius: ') NewLine

Print 'Dig new center of circle: ',
GetDig(1, 1, Ndigs, Origin)
Transform(10) = Origin.X
Transform(11) = Origin.Y
Transform(12) = Origin.Z

 MSubrecAC(Mib(1), Occur, Error, \
 Transform(1), RadiusC, ABeg, AEnd)

 RpntEnt(Mib(1), 1, Error)

End Proc

G-183 Database Format

Database Format

Example: ELLIP.UPL

-- ELLIP.UPL -- create an ellipse.
-- This program demonstrates direct database
-- access using UPL intrinsics. Note that an
-- ellipse contains the EP subrecord which
-- DOES NOT it own UPL intrinsics. Instead,
-- use the code provided in this appendix
-- listed as 'EP subrecord definition'.
-- In this example it is read (via 'include'
-- statement) from a file named 'epsubrec.inc'.

Proc Main

 $Include 'epsubrec.inc'

 Const Integer EllipseType = 14
 Integer ColorC, LayerC, VvisC, FontC, GroupC
 Integer4 Mib
 Integer DataBuffer(5)

 Integer Occur, Error, CPL

 Coord Origin
 Integer NDigs

-- start of code --

-- First, create the MIB sub-record. Use system
-- default values for layer, color, etc.
-- The call to AddEnt actually adds the subrecord.

 SysVarI(l, ColorC)
 SysVarI(2, FontC)
 SysVarI(3, LayerC)
 SysVarI(1474, VvisC)
 If VvisC <> 0 then
 SysVarI(4, VvisC)
 Endif
 SysVarI(1333, GroupC)
 GroupC = GroupC - 1

G-184 UPL Revision 6.0

Database Format

 DataBuffer(1) = LayerC
 DataBuffer(2) = VvisC
 DataBuffer(3) = GroupC
 DataBuffer(4) = FontC
 DataBuffer(5) = ColorC

 AddEnt(EllipseType, DataBuffer(1), Mib, Error)

-- Now create the PDF subrecord and add it to
-- the database. Prompt user for radius and
-- origin. Use current CPL. Note that origin,
-- orientation of ellipse, and scaling factors
-- (not used here) are all stored in Transform
-- array. PutSrR actually adds PDF subrecord.

 Accept MajorRadEP Prompt('Enter major axis: ')\
 NewLine
 Accept MinorRadEP Prompt('Enter minor axis: ')\
 NewLine

 SysVarI(12, CPL)
 GetCPL(CPL, EPsubrec(1))

 Print 'Dig center of ellipse: ',
 GetDig(1, 1, Ndigs, Origin)
 TranslateEP Origin

 StartAngEP 0
 EndAngEP = TwoPio

 PutSrR(Mib, 'EP', 64, EPsubrec(1), Error)

 RpntEnt(Mib, 1, Error)

End Proc

G-185 Database Format

Database Format

Example: CHELLIP.UPL

-- CHELLIP.UPL -- change an ellipse.
-- This program demonstrates direct database
-- access using UPL intrinsics. Note that an
-- ellipse contains the EP subrecord which
-- DOES NOT it own UPL intrinsics. Instead,
-- use the code provided in this appendix
-- listed as 'EP subrecord definition'.
-- In this example it is read (via 'include'
-- statement) from a file named 'epsubrec.inc'.

Proc Main

 $Include 'epsubrec.inc'

 Const Integer EllipseType = 14
 Integer ColorC, LayerC, VvisC, FontC, GroupC
 Integer4 Mib(1)
 Integer DataBuffer(8)

 Integer Occur, Error, CPL

 Coord Origin
 Integer NDigs, Iend, NBytes

 Integer4 NEnts

 String EPrec:2 'EP'

-- start of code --

-- First, identify the ellipse using GetEnt.
-- Only allow ellipses to be digged.

 EntMask(0)
 EntMask(EllipseType)
 Print 'Digitize ellipse: ',
 GetEnt(1, NEnts, Mib(1), IEnd)
 Print

G-186 UPL Revision 6.0

Database Format

-- Next, read the MIB sub-record using ReadEnt,
-- modify the data, and then modify the MIB
-- subrecord using WriteEnt.Note that DataBuffer
-- has different offsets from the one used with
-- AddEnt. Also, you could access data directly in
-- DataBuffer and not use ColorC and LayerC.

 ReadEnt(Mib(1), DataBuffer(1))

 LayerC = DataBuffer(4)
 ColorC = DataBuffer(8)
 Print 'Circle color is ', ColorC ,'.'
 Print 'Circle layer is ', LayerC ,'.'
 Accept ColorC Prompt('New color: ') NewLine
 Accept LayerC Prompt('New layer: ') NewLine
 DataBuffer(4) = LayerC
 DataBuffer(8) = ColorC
 WriteEnt(Mib(1), DataBuffer(1))

-- Now read the PDF subrecord using GetSrR, modify
-- the data,then modify the subrecord with ModSrR.

 Occur = 1
 GetSrR(Mib(1), EPrec, Occur, 64, NBytes, \
 EPsubrec(1), Error)
 Print 'Current major axis is ',\
 MajorRadEP, '.'
 Accept MajorRadEP Prompt('New major axis:')\
 NewLine
 Print 'Current minor axis is ',\
 MinorRadEP, '.'
 Accept MinorRadEP Prompt('New minor axis:')\
 NewLine
 Print 'Dig new center of ellipse: ',
 GetDig(1, 1, Ndigs, Origin)
 TranslateEP = Origin
 ModSrR(Mib(1), 'EP', Occur, 64, EPsubrec(1), \
 Error)
 RpntEnt(Mib(1), 1, Error)

End Proc

G-187 Database Format

