Personal Designer

User Programming Language

(UPL)

Revision 6.0

User Reference Guide

Appendix G

Database Format

Database Format

Disclaimer

This appendix describes the part or drawing database format and a set of routines used to manipulate it at a subrecord level. This appendix is included for reference purposes only and is not supported as part of the released UPL product. The response center does not have the resources to answer questions on this appendix. Computervision reserves the right to change the database format and any of these routines without prior notification of our users.

CAUTION:

•
Computervision cannot assume responsibility for a part or drawing which is modified by a program using any of these routines.

•
The database format and the routines described in this appendix are subject to change without notice. Incorrect use of this information or the included intrinsic procedures can damage or destroy part databases.

•
If this information changes in a new revision, programs which use this information or the intrinsic procedures may not work and could possibly damage your database.

Introduction To This Appendix

The first part of this appendix describes the database format. Next is a description of the different methods of database access, followed by a more detailed description of the parts of the database: the subrecords which make up each kind of entity. The last portion of the appendix details the intrinsic routines which are used to access the subrecords.

Overview of the Database Format

A Personal Designer part or drawing database file is made up of three parts:

1)
a Header

2)
the Master Index Block (MIB) portion and

3)
the Part Data File (PDF) portion.

What Happens When You Activate a Part

When you activate a part in Personal Designer, the part file is opened and the database is put into Part Temporary Files. The MIB portion is put into the CVMIB.TMP file. The PDF portion is put into the CVPDRTMP file.

G‑3
Database Format

Database Format

When you save a part, it writes the new database information to the named part file. Otherwise, the data is lost. You can save a part using the Personal Designer commands FILE, or EXIT with the save option. You can also set the automatic save feature in the configurator.

The File Header

The file Header is l28 bytes long and contains various bookkeeping information needed by Personal Designer when a part is activated. You will never need to access this portion of the database directly because Personal Designer and UPL do this for you.

Each entity in Personal Designer is defined by a database record. These records are made up of subrecords. Each entity has one subrecord in the MIB file, and at least one subrecord in the PDF file.

The MIB File

The MIB file consists of 16 byte subrecords, one for each entity in the part. This subrecord holds attributes which are common to all types of entities – such as entity type, layer, view of visibility, group, font, and color. Also included is the ”PDF pointer.” This is an offset into the PDF file where the rest of the information about the entity resides. Entities are identified by the MIB number which is assigned when the entity is created. This unique record number does not change randomly. It remains the same until the part is exited and/or filed in conjunction with the database packing option.

The Part Data File (PDF)

The PDF file is made up of subrecords of varying lengths, at least one for each entity in the part. These subrecords hold information which is specific to each type of entity. For example, the data defining a circle will be much different than the data which defines a line. All PDF subrecords for a given entity are contiguous. For each entity type, a specific subrecord ordering must be maintained. Some subrecords are optional. Some subrecords may occur one or more times. In addition to entity specific subrecords, there are subrecords for properties, tags, and multiple views (MViews) which may be added to any entity’s PDF record.

G–4
 UPL Revision 6.0

Database Format

The list below describes entity subrecord types and their contents:

Entity Subrecord Types and Their Contents

	AC –

AI –

AP –

AS –

Bl –

CP –

CT –

di –

dl –

dr –

D1 –

D2 –

D3 –

D4 –

D5 –

D6 –

DS –

DV –

DX –

EP –

EX –

gp –

GX –

I2 –

I4 –

IL –

IU –

L1 –

L2 –

LP –

MA –

MG –

mv –

MV –

NC –
	Arc information

Interval appearance information for an entity in an MView

Partial arc information – for angular dimensions

Associativity record

General purpose character data (byte)

Toolpath Cut vectors

Centerline data

Dimensioning integer data

Dimensioning logical data

Dimensioning real data

Dimensioning general information

Auxiliary text string for dimensions

Auxiliary text string for dimensions

Dimension entity association

Dimension prefix text string

Reference entity for parallel or perpendicular orientation

of a dimension

Display Image information

MView transform data

MView viewing data

Ellipse information

Extents information

General parameters

NURB curve and surface image data

General purpose integer data (2 byte, signed)

General purpose integer data (4 byte)

Image list (figure name)

Nsurface trim boundary 2D control points

Dimension extension line endpoint coordinates

Dimension extension line endpoint coordinates

Plane information

Entity appearance information in an MView

Drawing MView list

MView definitions

MView visibility assignment of an entity

NURB curve header

G–5 Database Format

Database Format

	
	NM –

NS –

NT –

NV –

OF –

PA –

PC –

PH –

PU –

PX –

R4 –

R8 –

SP –

TB –

TC –

TD –

TF –

TG –

TI –

TR –

TS –

TX –

U2 –

VN –

WD –

XD –

XF –

XH –

XN –

XP –

XT –

XZ –
	Name of an entity

NURB surface header

NURB surface trim boundary header

NURB knot vector

Offset for all dimensions

Entity property information

Bezier curve and surface header

NURB control points

NURB trim boundary control points

Coordinates of a point

General purpose single-precision real data

General purpose double-precision real data

Evaluation point information

NURB trim boundaries

Text color for all dimensions

Text format and orientation information

Transform matrix

Entity tag information

Toolpath integer data

Toolpath real data

Toolpath spin data

Text character string and Bezier extents data

General purpose integer data

Working View Transformation matrix

Wide string information (vertices)

Nurbs interpolation points

Exploded entity type list

Cross – hatching information

Coordinates of vertices in a string

Cross hatching information

NURB extents data

Endpoints of a line

Accessing the Database

There are three ways of directly accessing the database: Reading, Modifying, and Writing. There are intrinsic procedures for each method.

Reading involves simply retrieving entity data from the database. The intrinsic routines simply return the information in the parameters supplied.

G–6
UPL Revision 6.0

Database Format

Modifying involves changing already existing subrecord data. You should first read the existing data, then change that data, and finally, modify the subrecords. This will minimize the chances of damaging your part. Be sure that the new data is valid for that type of entity. Invalid data can cause the system to hang or damage your part.

Note that if UNDO is selected on, or if the new PDF subrecord data occupies more storage than the original data, the following happens: The entity’s PDF subrecords are copied to the end of the PDF file to allow for expansion. The subrecords are then modified and the PDF pointer in the MIB subrecord is updated to point to them, instead of the old ones.

Writing involves adding new data to an entity. This is generally done in two situations. The first is when you are adding an additional PDF subrecord, such as a property subrecord, to an entity. The second is when you are creating a new entity in the database.

When adding a PDF subrecord to an existing entity, the following happens: All of the entity's PDF subrecords are copied to the end of the PDF file to allow for expansion. The new subrecords are then added and the PDF pointer in the MIB subrecord is updated to point to them, instead of the old ones.

When creating a new entity, the MIB subrecord is first added to the end of the MIB file. The new PDF subrecords are then added by writing them to the end of the PDF file. Finally, the PDF pointer (in the MIB subrecord) is updated to point to the new PDF subrecords.

Be sure the data to be written to or modified in the subrecords are valid. Check the database description in this appendix and be sure to follow the given ordering for the subrecords. Invalid data or subrecords which are out of order can cause the system to hang or damage your part.

Exiting or filing with the pack database option removes all the unused entity records in the database. Subrecords abandoned due to the PDF expansion mentioned above are removed. Also removed are deleted entities. When an entity has been deleted, its entity type field of its record is negated.

G–7
Database Format

Database Format

Based Variables

Accessing certain subrecord types requires the use of based variables. A based variable acts for the programmer as a drafting template would for a draftsman. It superimposes a structure or form on an unstructured block of data. For example, to modify an ellipse, you must use based variables to base the contents of the EP subrecords to a REAL array and pass that array to the GetSrR, PutSrR, and/or ModSrR routines. See the examples at the end of this appendix.

Based variables are similar to normal variables except that their addresses or storage locations are based on the storage location of a previously defined variable. This is similar in concept to the FORTRAN EQUIVALENCE statement.

The syntax for declaring a based variable is:

<based var> @ <var>[+<iconst>]

Replace <based var> with the based variable’s name. Replace <var> with the name of the previously defined variable. Replace <iconst> with an integer constant giving the number of bytes from the beginning of <var> to place <based var>. Variables based to an array usually start with an offset of 2 to allow for the array’s internal size descriptor. Appendix E gives the internal data storage for variables. It should be used to help determine <iconst>.

Based variables are declared in the variable declaration section of a procedure or function or in the Group section. Those declared in a procedure or function can be based to variables defined in the global variable Group section. Both based and non – based variables can be declared on a single variable declaration line.

Based variables cannot be arrays, however they are usually based to an array variable. When basing variables to an array, as in the first example, no parentheses or element numbers can be used in the based variable. The offset should usually start at two to allow for the length field of the array structure.

G–8
UPL Revision 6.0

Database Format

Examples:

REAL A(20), A1 @ A+2, A2 @ A+6, A20 @ A+78

INTEGER BUFFER(82), BUFFER_LENGTH @ BUFFER

REAL X1 @ BUFFER+2, X2 @ BUFFER+6

COORD C1 @ BUFFER+10

Entity Format

The following is a description of the database format of each entity used by Personal Designer. The list describes all the supported entity types – their name, type, and subrecords used.

MIB Subrecord

Every entity has an MIB portion with exactly the same format. It is a 16-byte subrecord which contains the following fields in the following order: entity type, PDF pointer, layer number, view of visihility, group number, line font, and color number. Each of these fields is a 2-byte integer excepting the PDF pointer, which is a 4-byte integer. Note that the high order byte of the line font field contains flags related to the use of multiple views, as follows:

Bit
Meaning

7
MV subrecord exists in PDF portion

6
MA subrecord exists in PDF portion

5
AI subrecord exists in PDF portion

4 – 0
(Reserved)

where bit 7 is the most significant bit of the byte.

Use the intrinsic procedures ReadEnt, WriteEnt, and AddEnt to access the MIB subrecord. See Direct Access Intrinsics (below) for more information.

G–9
Database Format

Database Format

PDF Subrecord

PDF Subrecord NOTE: The PDF subrecords are listed in rhe EXACT order that they must be written to the database.

Most PDF subrecord types have direct access intrinsic procedures written especially for them. Those which do not are listed at the end of the section with an appropriate based variable template. These templates may be entered and stored in a text file. The compiler directive $Include may then be used to insert that text file into your program. Then use the appropriate GetSR*, ModSR*, or PutSR* routine to access the data, where * represents either C, I, R, or S. See the Direct Access Intrinsics section (below) for more information.

All coordinate data is stored in model space coordinates unless otherwise noted.

Type
Entity

1
Line

XZ -
line endpoints

2

String (or Arrow)

XN -
coordinates of string vertices

WD -
coordinates of vertices if a wide string (optional);

If a WD subrecord is present, XN is used for

digitizing.

Note: If the AS subrecord is present, the string is a nodal line.

TX -
character string (optional);

The TX subrecord is present only if the string is being used with the PIXL property for specialized repaint (for build menus and dialog boxes).

3

Arc

AC -
view transform, origin, radius, start angle, end angle

4
Text

TD -
X/Y view transform, justification, origin, height, width,

line spacing

TX -
character string; if the TX subrecord has no cha-

racters, it is a text node, which is displayed as a small triangle and is a placeholder for text to be added later.

G-10
UPL Revision 6.0

Database Format

Type Entity

5
Point

PX ‑
coordinates of point

SP ‑
evaluate nsurface data

6
Linear Dimension

TD –
X/Y view transform, justification, origin, height, width,

line spacino,

TX ‑
dimension (stored as a character string)

L1 ‑
endpoints of first witness line (optional)

L2 ‑
endpoints of second witness line (optional)

XN ‑
arrow coordinates (one or more)

D1 ‑
dimension and tolerance information

D2 ‑
overriding text string (optional)

D3 ‑
alternate text strin‑ (optional)

D4 ‑
dimension entity association

D5 ‑
prefix text string (optional)

D6 ‑
dimension direction (parallel or perpendicular)

TC ‑
dimension text color (optional)

OF ‑
dimension offsets (optional)

Note:
The vertex fields in the D4 subrecord may contain integers

from 1 ‑ 1000. A ‑ 1 value means the association is to the

entity's origin. A positive value means the association is to

the nth vertex of the entity. Zero means no association.

Linear dimensions without a D4 subrecord are associative to

the two dimension points in the D1 subrecord (if D1 is

present). lf one of the vertex numbers in the D4 subrecord is

zero, that dimension is associated to the corresponding

dimension point.

7
Label (Point Dimension)

TD -
X/Y view transform, justification, origin, height, width,

line spacinc,

TX ‑
dimension (stored as a charaeter string)

XN ‑
arrow string coordinates (one or more)

D1 ‑
dimension and tolerance information

AP ‑
balloon arc data (optional; one or more)

D2 ‑
overriding text string (optional)

D3 ‑
auxiliary text string (optional)

D5 ‑
prefix text strin‑ (optional)

TC ‑
dimension text color (optional)

G‑11
Database Format

Database Format

Type Entity

Label (continued)

Note:
This entity type may be referred to as a balloon if the AP

subrecord is present, or a PDIM (point dimension), in which

the text of the label is the XYZ coordinate at the point of

the arrowhead.

The linear dimension text should be center justified.

8
Radius Dimension

TD ‑
X/Y view transform, justification, origin, height,

width, line spacing

TX ‑
dimension (stored as a character string)

XN ‑
arrow string coordinates (one or more)

D1 ‑
dimension and tolerance information

D2 ‑
overriding text string (optional)

D3 ‑
alternate text string (optional)

D5 ‑
prefix text string (optional)

TC ‑
dimension text color (optional)

9
Angular Dimension

TD ‑
X/Y view transform justification, origin, height, width,

line spacing

Note:
Justification varies according to the standard in use;

ANSI is left justified, while ISO and JIS are center justified.

TX ‑
dimension (stored as a character string)

L1 ‑
endpoints of first witness line (optional)

L2 ‑
endpoints of second witness line (optional)

XN ‑
arrow coordinates (one or more)

AP ‑
partial arcs' oriein, beginning and ending angles

(optional; one or more)

D1 ‑
dimension and tolerance information

D2 ‑
overriding text string (optional)

D3 ‑
alternate test string (optional)

D5 ‑
prefix text string (optional)

TC ‑
dimension text color (optional)

OF ‑
dimension offsets (optional)

G‑12
UPL Revision 6.0

Database Format

Type
Entity

10
Cross‑hatch

XH ‑
endpoints of cross‑hatch lines (one or more)

XP ‑
cross‑hatch angle, distance, offset, pattern,

number of boundaries

XN ‑
vertices of boundaries (one or more)

Note:
These subrecords may appear in any order, and multiple

XH -
subrecords may be used for patterns, but the total PDF

record size cannot exceed 32K.

The solid fill option is a function of the graphics display

device driver only, and does not plot.

11
Figure Instance

EX ‑
extents of ficure (transformed from figure definition)

TF ‑
transformation matrix, MIB of figure's image list

entity (entity type 147)

XF ‑
exploded entity type list

The XF subrecord is present only on an XFIGURE

or NFIGURE. Also, if the first word in a XF subrecord

is "‑1", all entity types are exploded.

AS ‑
exploded entity association pointers

The AS subrecord is present only on an XFIGURE

or NFIGURE.

12
Diameter Dimension

TD ‑
X/Y view transform, justification, origin, height,

width, line spacing

TX ‑
dimension (stored as a character string)

L1 ‑
endpoints of first witness line (optional)

L2 ‑
endpoints of second witness line (optional)

XN ‑
arrow coordinates (one or more)

D1 ‑
dimension and tolerance info

D2 ‑
overriding text string (optional)

D3 ‑
alternate text strine (optional)

D5 ‑
prefix text string (optional)

Note:
The text of a type 2 diameter dimension should be center

justified.

TC ‑
dimension text color (optional)

OF ‑
dimension offsets (optional)

G‑13
Database Format

Database Format

Type
Entity

13
MView

TD ‑
X/Y view transform, justification, origin, height,

width, line spacing

TX ‑
MView frarne or fold line text

XN ‑
MView frame coordinates or fold line endpoints

DX ‑
MView's rotation vector, depth, originating view,

MView nurnber

DV ‑
MView's rotation transform, translation vector

Note:
MViews are 3D views based on the techniques of descriptive

geometry. MViews are active onty when in view 1, and

further depend on the status flag in the PPE. Each entity

that appears in an MView has a DG subrecord containing the

numbers of the MView in which it should be displayed.

14
Ellipse

EP ‑
ellipse's view transform, origin, radius 1, radius2, starting angle, ending angle

15
Construction Line

XZ ‑
Two points defining infinite line

Note:
Although a construction line contains two endpoints, these

define an infinite length veetor which is not considered

in caiculating the drawing extents.

16
Cpole (Bezier curve)

PC ‑
number of poles points in polygon (NP), number of vertices in string representing curve (NV), polygon display flags

XN ‑
coordinates of pole points (one per pole)

WD ‑
vertices of string representing curve

TX ‑
Polygon minimum, polygon maximum, curve minimum, eurve maximum (stored as 4 coordinates based to a text string)

17
Spole (Bezier surface)

PC ‑
number of poles points in U direction (NU), number of vertices in string representing curve, polygon display flags, number of pole points in V direction (NV), number of mesh lines in U direction (MU), number of mesh lines in V direction (MV)

G‑14
UPL Revision 6.0

Database Format

Type
Entity

Spole (continued)

XN ‑

pole coordinates (NV records of NU poles)

WD ‑
vertices of mesh strings (one for each U strinc, followed by one for each V string)

TX ‑
Polygon minimum, polygon maximum, curve minimum, curve max., (stored as 4 coords. based to a text string)

18
Plane

LP ‑
origin point, normal vector, bounds

WD ‑
vertices of string representing plane (5 vertices:

4 corners of square. vert #1 = vert#5)

21
Connect node

PX ‑
coordinates of node.

22
Centerline

XZ ‑
line endpoints (see Note with CT below)

AC ‑
arc data (see Note with CT below)

CT ‑
centerline data

Note:
Centerline types are: linear (1), radial (3), and

composite (10). If the type specified in the CT subrecord

is linear, then the first subrecord must be XZ and no AC

will be present. lf the specified type is radial, then the first

subrecord must be AC and no XZ will be present. lf the

specified type is composite, then neither an XZ or AC

subrecord will be present.

XN ‑
locations of overriding dash locations (optional)

XH ‑
centerline image

23
Ordinate Dimension

TD ‑
X/Y view transform. Justification associativity

flag, MView no., text font no., slant angle.

TX ‑
dimension (stored as character string)

L1 ‑
endpoints of first witness line (optional)

L2 ‑
endpoints of second witness line (optional)

XN ‑
arrow coordinates (one or more)

D1 ‑
dimension and tolerance info

D2 ‑
overriding text string (optional)

D3 ‑
alternate text string (optional)

G‑15
Database Format

Database Format

Type
Entity

Ordinate Dimension (continued)

D4 ‑
dimension entity association.

D5 ‑
prefix text string (optional)

TC ‑
dimension text color (optional)

OF ‑
dimension offsets

Note:
Ordinate Dimension text should be center justified. Vertex fields in the D4 subrecord may contain integers ranging from ‑ 1 to 1000 . A ‑ 1 means the association is to the entity's origin. A positive value means the assoeiation is to the entity's nth vertex. A zero means no entity association. lf one of the vertex numbers in the D4 subrecord is zero, then that end of the dimension is associative to the corresponding dimension point.

30
NURB eurve (Nspline)

NC ‑
NURB curve header, degree of eurve, curve flags

NV ‑
knot vector (present only if 'uniform 'flag is set)

PH ‑
control points

GX ‑
TGF index currently must be set to 0,0.

XT ‑
3D extents, polygon minimum, polygon

maximum, curve minimum, curve maximum

TB ‑
curve trim boundaries, parametrie start and end

XD ‑
interpolation data points

31
NURB surface (Nsurface)

NS ‑
Nsurface header degrees (dU, and dV) of surface,

count of control points (mu and mv), surface flags,

mesh of surface (ku and kv), surface trim data,

interpolation points.

NV ‑
knot vector in U direction (mu + du + 1 reals)

NV ‑
knot vector in V direction (mv + dv+1 reals)

PH ‑
polygon points (mv subrecords)

GX ‑
mesh image 3D points eurrently must be set to 0,0.

XT ‑
3D extents; polygon minimum, polygon maximum,

surface minimum, surface maximum

NT ‑
2D trim boundary‑, nspline curve header ‑ degree,

count polygon points, count of critical points

G‑16
UPL Revision 6.0

Database Format

Type
Entity

NURB surface (continued)

PU ‑
trim boundary polygon points

TB ‑
knot vector for trim curve

TC ‑
knot vector for critical points (not currently being used)

IU ‑
boundary interpolation points

XD ‑
coordinates of data points (pv subrecords) if 1!=0

35
3‑axis Toolpath

XN ‑
Toolpath coordinates (one or more subrecords)

TI ‑
Toolpath inte‑er data

TR ‑
Toolpath real data

PA ‑
property (used for character data)

The PA subrecord appears only on the first entity

in the path.

36
2 1/2‑axis Toolpath

TI ‑
Toolpath integer data

TR ‑
Toolpath real data

PA ‑
output file name, toolpath comment

CP ‑
number of Z cuts, CPL origin

TS ‑
tool spin direction and feed rate

XN ‑
coordinates of tool path

AC ‑
arc information (TS, XN, AC may

repeat one or more times)

145
Display (Image)

DS ‑
display extents, associated view, xmin, xmax, ymin,

ymax, screen scale, view number.

Note:
The MIB record is non‑standard, and stores the image number in the layer field. Also, the image entity may be referred to as a display.

146
View

VN ‑
working view transform

PX ‑
origin of CPL

Note:
The view number is stored in the MIB subrecord's layer field.

Note:
lf the view is defined as a CPL, a PX subrecord will be present. This cives the origin of the CPL.

G‑17
Database Format

Database Format

Type
Entity

147
Figure Definition

IL ‑
figure name

EX ‑
figure extents

Note:
The MIB subrecord holds figure information:

a)
The view of visibility (VVIS) field holds the

MIB number of the figure's first entity

b)
The group field holds the number of entities in the figure. c)
The line font field holds the time the figure was last filed. d)
The color field holds the date the figure was filed.

The figure definition entity may also be referred to as a 'Figure Image List.'

Each of the entities in a figure is loaded into the current part; 1.000 is added to the type field of the MIB record of the figure's entities, to differentiate them from the part's entities. Although you may change the color, layer, etc. of your figure instance, the figure image itself will still show up with its original colors on its original layers. When a part is activated, Personal Designer checks the time and date stored here against the time and date of the source drawing‑, if the drawing has been changed, the user is optionally prompted to update the figure. The source drawing file name may contain a drive and path designator if the user specified an explicit path when the figure was inserted. This may cause problems when a part is moved from one operating system to another. If no path is specified, the environment variable "FIGPATH" locates the source part.

148
Part Parameter Entity

EX ‑
Drawing extents

dl ‑
Dimensioning logical parameters

di ‑
Dimensioning integer parameters

dr ‑
Dimensioning real parameters

gp ‑
general parameters

R4 ‑
additional real dimension data

I2 ‑
additional integer dimension data

G‑18
UPL Revision 6.0

Database Format

Type
Entity

Part Parameter Entity (continued)

R4 ‑
dual dimension real data

I2 ‑
dual dimension integer data

B1 ‑
dual dimension prefix

B1 ‑
dual dimension suffix

R4 ‑
centerline real data

B1 ‑
color‑by‑layer data

I2 ‑
color‑by‑layer table

mv ‑
MView definitions

Note:
There should never be more than one PPE entity in a part.

Also, the PPE entity is created or modified each time a

ZOOM ALL command is executed.

Personal Designer tries to make this entity number 1, but

some circumstances cause this entity to appear later in the

database. With the exception of the drawing extents, the data

in this entity reflect the state of the part when it was

activated. Any commands issued when the part is open will

not change the subrecord data, but instead change the

corresponding system memory variables. The subrecord is

updated only when the part is filed. To obtain the current

values for the data contained in this entity, use the

SYSVARI and SYSVARR UPL intrinsic functions.

149
Appended Datafile

TX ‑
data (one or more subrecords)

Note:
The data stored in the TX subrecord can be of any type.

The subrecords should not exceed 1000 bytes in each length. lf the data you want to store exceeds 1000 bytes, carry over the data to another TX subrecord. For this reason, it is important that the order of the subrecords be maintained.

Note:
The MIB record is non‑standard, and it stores the file name

or data type name in the Vvis, Group, Font, Flags,

and Color fields. The file name or data type name is

case‑sensitive and should be padded with nulls (0) if

necessary.

G‑19
Database Forniat

Database Format

Type
Entity

Appended Data file (continued)

Note: The following data file types are currently defined:

Type number

Description

‑2......‑32.768

User‑defined non‑specific data

‑1

User‑defined ASCII text data

0

Unknown data

1

ASCII text data

2

Non‑specific data

3

Shaded image

4

TIFF

5

Sun Raster

6

String macro file

7

Keyboard macro file

8

Color palette definition file

9........32.767

Reserved

Note:
You can use the DISPLAY APPENDEDFILE command to display data in an appended data file. lf the absolute value of the file type number is < 1 or > 10.000, the data is displayed on the screen as ASCII text. lf the absolute value of the file type number is > 1 and :5 10.000, the DISPLAY APPENDEDFILE command does not display the data.

Note:
API programs can be "registered" to gain control of the DISPLAY APPENDEDFILE command (prior to the application attempting any display) and may display non‑ASCII data using whatever means the API program provides. For more information, refer to the API Programmer's Reference.

G‑20
UPL Revision 6.0

Database Format

Type
Entity

150
Drawing sheet

MG ‑
drawing MV list

Note:
The MIB record is non‑standard, and it stores the sheet name in the Vvis, Group, Font, Flags, and Color fields. The sheet narne is case‑sensitive and should be padded with spaces if necessary.

Other Subrecords

The following Part Data File (PDF) subrecords are not supported with the Rsubrec__, Msubrec__, Wsubrec__ intrinsic routines. Instead, enter the subrecord templates given below into your program and use the GetSR__, ModSR__, PutSR__ intrinsies. You can enter these as text files and put in your program with the $lnclude compiler directive.

G‑21
Database Format

Database Format

-- AI Subrecord definition ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑--------

‑‑-----

-- Multiple View (MView) interval appearance info.

-- This is color and font appearance info that is

-- generated by the Personal Designer command CHANGE

-- APPEARANCE INTERVAL. (Note: whole‑entity MView

-- appearance info is held in the MA subrecord). AI

-- subrecords occur on each entity placed in an

-- MView AND selected in a CHANGE APPEARANCE

-- INTERVAL command. One AI subrecord occurs for

-- each interval in the MView in which the entity

-- appearance is changed. Also, each entity may

-- have its appearance changed in different MViews,

-- resulting in many AI subrecords on an entity.

-- 'MVnumberAI' is the MView number in which the

-- appearance is changed. 'ColorFontMA' holds the

-- font in two consecutive bytes. The order of these

-- bytes may be implementation dependant. On

-- machines such as Intel and DEC MIPS the font is

-- in low order byte and the color is in the high

-- order byte. On Sun SPARC machines the reverse is

-- true. A value of zero in either byte means no

-- change: use font or color in MIB subrecord.

-- ParamStartAI and ParamEndAI are the parametric

-- start and finish of the interval.

-- Use with GetSrI, ModSrI, and PutSrI intrinsics

-- 1) Access desired variables in 'AIsubrec'

-- 2) Substitute for the 'ibuf' parameter

integer AIsubrec(6)

integer MVNumberAI @ AIsubrec + 2

integer ColorFontAI @ AIsubrec + 4

real ParamStartAI @ AIsubRec + 6

real ParamEndAI @ AIsubRec + 10

G‑22
UPL Revision 6.0

Database Format

‑‑-

‑‑ AS Sub‑record definition ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑-

‑‑‑

-- Entity associativity subrecord.

-- The associativity type and MIB number of the

-- associated entity. For each associated entity

-- there is a type and MIB number entry.

-- With parent‑child associativity, one entity is

-- associated to another (one way). With peer

-- associativity,both entities point to each other.

-- Association types are:

--
Move or delete (MOVD): 1

--
Delete only
 (DELO): 2

--
Move only
 (MOVO): 3

--
Nodal line end 1: 101

--
Nodal line end 2: 102

-- NOTE: AS sub‑record has a variable length.

-- You may have to adjust size of the 'ASsubrec'

-- array for your needs. The maximum size for

-- AS subrecord is 3000 assoc. (12000 bytes).

‑‑‑

-- Use with GetSrI, ModSrI, and PutSrI intrinsics

-- 1) Access variables named below.

-- 2) Substitute 'ASsubrec' for the 'ibuf'

-- parameter.

‑‑‑

integer ASsubrec(101)

integer AssoTypelAS @ ASsubrec + 2

integer AssoEntlAS @ ASsubrec + 4

integer AssoType2AS @ Assubrec + 6

integer AssoEnt2AS @ Assubrec + 8

integer AssoType3AS @ Assubrec + 10

integer AssoEnt3AS @ Assubrec + 12

integer AssoType4AS @ Assubrec + 14

integer AssoEnt4AS @ Assubrec + 16

‑‑etc

‑‑etc

‑‑‑

G‑23
Database Format

Database Format

‑‑‑

‑‑ 'CP' Sub‑record definition ‑ (2 1/2 Axis) ‑‑

-- 2 1/2 Axis Cut Vector information.

‑‑‑

-- Holds Number of Z Cuts,

-- Z Normal Vector / Incremental Cut Vector

-- CPL origin.

--

-- Appears as set of 4 subrecords TI, TR, PA, CP

-- on the first toolpath entity in a multiple

-- toolpath series.

--

-- The Normal Vector is the Z axis of the CPL.

-- Upon creation, the length is the depth of

-- the cut if Z Cut Number > 1.

‑‑

-- real CPsubrec(7)

-- real NumZCutsCP @ Cpsubrec + 2

-- coord ZnormIncCutVecCP @ Cpsubrec + 6

-- coord CPLOriginCP
 @ Cpsubrec + 18

‑‑‑

‑‑‑

‑‑ 'di' Sub‑record definition ‑‑‑

-- Dimension integer information.

-- Integer values stored on Part Parameter entity

-- (PPE). There is usually no need to access these

-- directly. Instead, use the SysVarI intrinsic to

-- access integer system variables #2001‑2004, 2031.

-- See SysVarI pages in this manual for more info.

‑‑‑

-- If you must access directly:

-- Use with GetSrI, ModSrI, and PutSrI intrinsics

-- 1) Assign desired integers in 'disubrec'

-- 2) Substitute for the 'ibuf' parameter

‑‑-

integer disubrec(5)

‑‑‑

G‑24
UPL Revision 6.0

Database Format

‑‑‑--

‑‑ 'dl' Sub‑record definition ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑---

‑‑‑--

‑‑ Dimension logical information. True/false values ‑‑ stored on Part Parameter entity (PPE). There is ‑‑ generally no need to access these directly.

‑‑ Instead, use the SysVarI intrinsic to access

‑‑ integer system variables #2005‑2038. See SysVarI ‑‑ pages in this manual for more information. ‑‑‑

‑‑ If you must access directly:

‑‑ Use with GetSrI, ModSrI, and PutSrI intrinsics

‑‑ 1) Access desired bits in 'dlsubrec'

‑‑ 2) Substitute for the 'ibuf' parameter

‑‑ Use UPL intrinsics SetBit and GetBit to

‑‑ manipulate the 1‑bit logical values. ‑‑---

integer dlsubrec(20)

‑‑‑--

‑‑‑--

‑‑ 'dr' Sub‑record definition ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑---

‑‑‑--

‑‑ Dimension real information. Real values stored

‑‑ on Part Parameter entity (PPE). There is

‑‑ generally no need to access these directly.

‑‑ Instead, use the SysVarR intrinsic to access

‑‑ real system variables #2001‑2011. See SysVarR

‑‑ pages in this manual for more information.

‑‑‑

‑‑ If you must access directly:

‑‑ Use with GetSrR, ModSrR, and PutSrR intrinsics

‑‑ 1) Access desired reals to 'drsubrec'

‑‑ 2) Substitute for the 'rbuf' parameter

‑‑‑

real drsubrec(11)

‑‑‑

G‑25
Database Format

Database Format

‑‑‑

‑‑ D1 Sub‑record definition ‑‑-

‑‑ Dimension parameter information.

‑‑ Used on all dimension types, however format

‑‑ of record is different for each dimension type.

‑‑ Information below is entity specific, followed

‑‑ by that which is common to all entity types.

‑‑ For Linear Dimensions (LDIMs):

‑‑ The coordinates of the ends of the entities

‑‑ digitized when creating the dimension.

‑‑ Dimension orientation (1=horz, 2=vert, 3=ptpt)

‑‑ Dimension centering (1=centered, 2=not)

‑‑ For Ancrular Dimensions (ADIMs):

‑‑ MIB numbers and end numbers of the entities

‑‑ digitized when creating the dimension.

‑‑ Labels, Point Dimensions, Balloons (LDIMs):

‑‑ MIB of the dimensioned arc or circle,

‑‑ multiple view used when inserting dim.

‑‑ For Diameter (DDIMs), Radius Dimensions (RDIMs):

‑‑ MIB of the dimensioned arc or circle,

‑‑ multiple view used when inserting dim.

‑‑ Dimension orientation (1=horz, 2=vert, 3=ptpt)

‑‑ diam notation type (1='DIA', 2= symbol),

‑‑ symbol position (1=suffix, 2= prefix, 3=none)

‑‑ For ALL dimensions:

‑‑ Dimension angle, offset, arrow size, plus

‑‑ tolerance, minus tolerance, scale, arrowhead

‑‑ direction (1=in, 2=out), dimension standard

‑‑ (1=ISO/JIS, 2=ANSI), text alig=ent (I=aligned

‑‑ 2=no), arrowhead type, tolerance type,

‑‑ tolerance precision, construction plane used to

‑‑ create dimension, dimension precision. ‑‑‑

‑‑ Use with GetSrI, ModSrI, and PutSrI intrinsics

‑‑ 1) Assign desired integers in 'dlsubrec,

‑‑ 2) Substitute for the 'ibuf, parameter ‑‑-

integer D1SubRec(42)

‑‑-

G‑26
UPL Revision 6.0

Database Format

‑‑ For LDIMS:

coord End1D1 @ D1SubRec + 2

coord End2D1 @ D1SubRec + 14

integer LDimOrientD1 @ D1SubRec + 62

integer CenterD1 @ D1SubRec + 80

‑‑For ADIMS:

integer MibLinelD1 @ DISubrec + 2

integer MibLine2D1 @ D1Subrec + 4

coord EndLinelD1 @ D1Subrec + 6

coord EndLine2D1 @ D1Subrec + 18

‑‑ For Label:
integer MibLabD1
 @ D1Subrec + 2

integer LabMViewD1
 @ D1Subrec + 4

‑‑For DDIMS, RDIMS:

integer MibArcD1
 @ D1Subrec + 2

integer DimMViewD1
 @ D1Subrec + 4

integer DimOrientD1
 @ D1SubRec + 62

integer DWordSymD1
 @ D1Subrec + 80

integer IDummyD1
 @ D1Subrec + 82

integer PreSuffD1
 @ D1Subrec + 84

‑‑For All DIMS

real
 AngleD1
 @ D1SubRec + 26

real
 OffsetD1
 @ D1SubRec + 30

real
 ArrowSizeD1
 @ D1SubRec + 34

real
 PlusTolD1
 @ D1SubRec + 38

real
 MinusTolD1
 @ D1SubRec + 42

real
 TolHgtD1
 @ D1SubRec + 46

real
 ScaleD1
 @ D1SubRec + 50

real
 RdummyD1(2)
‑‑ reserved ‑
do not use

integer ArrOrientD1
 @ D1SubRec + 64

integer DimTypeD1
 @ D1SubRec + 66

integer AlignmentD1
 @ D1SubRec + 68

integer ArrowTypeD1
 @ D1SubRec + 70

integer TolTypeD1
 @ D1SubRec + 72

integer TolPrecD1
 @ D1SubRec + 74

integer CPLusedD1
 @ D1SubRec + 76

integer PrecD1
 @ D1SubRec + 78

‑‑‑

G‑27
Database Format

Database Format

‑‑‑

‑‑ D2 Sub‑record definition ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑-

‑‑‑

‑‑ Use with GetSrS, ModSrS, and PutSrS intrinsics

‑‑ 1) Assign desired string to 'D2subrec,

‑‑ 2) Substitute for the 'sbuf' parameter

‑‑ Note: D2 sub‑record has a variable length.

‑‑ You may have to adjust size of string for

‑‑ your needs. ‑‑‑

string D2subrec:256 ‑‑ Overriding text string

‑‑‑

‑‑‑

‑‑ D3 Sub‑record definition ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑-

‑‑‑

‑‑ Use with GetSrS, ModSrS, and PutSrS intrinsics

‑‑ 1) Assign desired string to 'D3subrec'

‑‑ 2) Substitute for the 'sbuf' parameter

‑‑ Note: D3 sub‑record has a variable length.

‑‑ You may adjust the size of the string for

‑‑ your needs. ‑‑

string D3subrec:256 ‑‑ Auxiliary text string

‑‑

‑‑‑

‑‑ D4 Sub‑record definition ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑-

‑‑‑

‑‑ Dimension entity association.

‑‑ The entity and vertex number (within the

‑‑ entity) which make up the endpoints of the

‑‑ dimension. Allows for updating of the dims

‑‑ if either entity is moved. ‑‑‑

‑‑ Use with GetSrI, ModSrI, and PutSrI intrinsics

‑‑ 1) Access variables named below.

‑‑ 2) Substitute 'D4subrec' for the 'ibuf'

-- parameter.

‑‑‑

integer
D4subrec(4)

integer
Ent1MIB
@
D4subrec + 2

integer
Ent1Vert
@
D4subrec + 4

integer
Ent2MIB
@
D4subrec + 6

integer
Ent2Vert
9
D4subrec + 8

‑‑‑

G‑28
UPL Revision 6.0

Database Format

‑‑‑

‑‑ D5 Sub‑record definition ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑-

‑‑‑

‑‑ Use with GetSrS, ModSrS, and PutSrS intrinsics

‑‑ 1) Assign desired string to 'D5subrec'

‑‑ 2) Substitute for the 'sbuf' parameter

‑‑ Note: D5 sub‑record has a variable length.

‑‑ You may have to adjust size of string for

‑‑ your needs. ‑‑‑

string D5subrec:256 ‑‑ Auxiliary text string

‑‑‑

‑‑‑

‑‑ D6 Sub‑record definition ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑-

‑‑‑

real
D6subrec(30)

coord
pnt1 @ D6subrec + 6

coord
pnt2 @ D6subrec + 18

-- pnt1/pnt2 endpoints of orientation line

‑‑‑

G‑29
Database Format

Database Format

‑‑‑

‑‑ DV Sub‑record definition ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑-

‑‑‑

‑‑ Multiple View transform information.

‑‑ Rotation vectors (directional cosines) and

‑‑ translation from origin.

‑‑‑

‑‑ Use with GetSrR, ModSrR, and PutSrR intrinsics

‑‑ 1) Substitute D5subrec for the 'rbuf' parameter.

‑‑ 2) TransformDV is start address of transform

 array. Use with NullTransform, GetCPL,

 GetView, MapTo, MapFrom, etc. See App. E

 Interanl Data Storage Format under

 Transform array for more info.

‑‑ 3) TranslationDV is the offset from origin.

‑‑‑

real DVsubrec(12)

real TransformDV @ DVsubrec + 2

coord TranslationDV @ DVsubrec + 38

‑‑‑

‑‑

‑‑ DX Sub‑record definition ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑

‑‑

‑‑ Multiple View view orientation data:

‑‑ Rotation vector, Z‑depth, View used to define

‑‑ the MView, and defined MView number.

‑‑‑

‑‑ Use with GetSrR, ModSrR, and PutSrR intrinsics

‑‑ 1) Substitute DXsubrec for the 'rbuf' parameter.

‑‑ 2) If CPL number is used to define an MView

‑‑ FromMVNumDX should be negative.

‑‑‑

real DXsubrec(5)

coord RotVectDX @ DXsubrec + 2

real ZDepthDX @ DXsubrec + 14

integer FromMVNumDX @ DXSubrec + 18

integer ThisMVNumDX @ DXsubrec + 20

‑‑‑

G‑30
UPL Revision 6.0

Database Format

‑‑-----

‑‑ EP Sub‑record definition ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑-----

‑‑-----

‑‑ Ellipse (entity type #14) information. Rotation

‑‑ vectors (directional cosines), origin, major

‑‑ radius, minor radius, starting and ending angles.

‑‑‑----

‑‑ Use with GetSrR, ModSrR, and PutSrR intrinsics

‑‑ 1) Substitute D5subrec for the 'rbuf' parameter.

‑‑ 2) TransformEP is start address of transform

‑‑ array. Use with NullTransform, GetCPL, GetView,

‑‑ MapTo, MapFrom, etc. See App. E, Internal Data

‑‑ Format under Transform array for more

‑‑ information.

‑‑ 3) OriginEP is the offset from model space origin.

‑‑-----

‑‑ real EPsubrec(16)

‑‑ real TransformEP @ Epsubrec + 2

‑‑ coord TranslateEP @ Epsubrec + 38

‑‑ real MajorRadEP @ Epsubrec + 50

‑‑ real MinorRadEP @ Epsubrec + 54

‑‑ real StartAngEP @ Epsubrec + 58

‑‑ real EndAngEP @ Epsubrec + 62

‑‑‑----

‑‑‑----

‑‑ 'gp' Sub‑record definition ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑-----‑‑‑----

‑‑ General parameter information. System values

‑‑ stored on Part Parameter entity (PPE). There is ‑‑ generally no need to access these directly.

‑‑ Instead, use the SysVarI, SysVarR intrinsics to ‑‑ access general system variables. See SysVarI,

‑‑ SysVarR pages in this manual for more

‑‑ information. ‑‑‑----

integer gpsubrec(65) ‑‑‑----

G‑31
Database Format

Database Format

‑‑‑

‑‑ GX Sub‑record definition ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑-

‑‑‑

‑‑ Graphics Index information. ‑‑‑

‑‑ Holds start of and size of curve image in

‑‑ graphical display lists (known as TGFs in

‑‑ CV CADDS world). It is currently not

‑‑ implemented and should be present but ignored.

‑‑ Both fields should be equal to zero. Used in

‑‑ both Nspline and Nsurface. ‑‑‑

‑‑ Use with GetSrI, ModSrI, and PutSrI intrinsics

‑‑ 1) Access variables named below.

‑‑ 2) Substitute 'GXsubrec' for 'ibuf'param. ‑‑‑

‑‑ integer GXsubrec(4)

‑‑ integer4 CurveImageOffGX @ GXsubrec + 2

‑‑ integer4 BCntCurveImageGX @ GXsubrec + 6

‑‑‑

G‑32
UPL Revision 6.0

Database Format

‑‑‑

‑‑ IU Sub‑record definition ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑-

‑‑‑

‑‑ Trim Bounds (Nspline) interpolation info.

‑‑‑

‑‑ Holds coordinates u & v of interpolation

‑‑ points of the NSurface trim bounds (which is

‑‑ an Nspline in U & V).

‑‑

‑‑ This subrecord is only present if the Nsurface

‑‑ has been tri=ed ('t' flag in NS subrecord

‑‑ is set to 1). It is #4 of 4 subrecords

‑‑ representing the trimming Nspline.

‑‑ (see NT subrecord for more information)

‑‑

‑‑ The number of interpolation points

‑‑ will be:

‑‑
m + d + 1

‑‑

‑‑ where d = degree of trimming Nspline or

‑‑ m = # of control pnts in trimming Nspline

‑‑ For Personal Designer Rev. 5, number of

‑‑ interpolation points must equal the number of

‑‑ control points in the trim boundaries.

‑‑‑

‑‑ Use with the GetSrR, ModSrR, PutSrR intrinsics

‑‑ 1) Access knot values in 'IUsubrec'

‑‑ 2) Substitute 'IUsubrec' for 'rbuf' param.

‑‑ This is a variable length subrecord. You may

‑‑ need to change the dimension of 'IUsubrec'

‑‑ for your needs.

‑‑‑

real IUsubrec(100)

‑‑‑

G‑33
Database Format

Database Format

‑‑-

‑‑ LP Sub‑record definition ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑-

‑‑-

‑‑ Plane data:

‑‑ Center point, Normal vector, Boundary size. ‑‑-

‑‑ Use with GetSrR, ModSrR, and PutSrR intrinsics

‑‑ 1) Substitute LPsubrec for 'rbuf' parameter. ‑‑-

‑‑ real LPsubrec(7)

‑‑ coord CenterPtLP 9 LPsubrec + 2

‑‑ coord NormVectLP @ LPsubrec + 14

‑‑ real BoundSizeLP @ LPsubrec + 26 ‑‑‑

‑‑-

‑‑ MA Sub‑record definition ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑---

‑‑-

‑‑ Multiple View (MView) appearance information.

‑‑ This is color and font appearance info gene-

‑‑ rated by the CHANGE APPEARANCE INTERVAL command.

‑‑ (Note: MView interval appearance information

‑‑ is held in the AI subrecord) MA subrecords occur

‑‑ on each entity which is put in an MView AND

‑‑ selected in a CHANGE APPEARANCE command. One MA

‑‑ subrecord occurs for each MView in which the

‑‑ appearance is changed. Thus,there may be more

‑‑ than one MA sub‑record on an entity.

‑‑ 'MVnumberMA' is the MView number in which the

‑‑ appearance is changed. 'ColorFontMA' holds

‑‑ the font in two consecutive bytes. The order of

‑‑ these bytes may be implementation dependant. On

‑‑ machines such as Intel and DEC MIPS, the font is

‑‑ in low order byte and color is in the high order

‑‑ byte. On Sun SPARC machines it is the opposite.

‑‑ A value of zero in either byte means no

‑‑ change: use font or color in MIB sub‑record.

‑‑-

G‑34
UPL Revision 6.0

Database Format

-- Use with GetSrI, ModSrI, and PutSrI intrinsics

-- 1) Access desired variables in 'masubrec'

-- 2) Substitute for the 'ibuf' parameter ‑‑‑---

integer MAsubrec(2)

integer MVNumberMA @ MAsubrec + 2

integer ColorFontMA @ MAsubrec + 4 ‑‑‑---

‑‑‑---

‑‑ 'mv' Sub‑record definition ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑----

‑‑‑---

‑‑ Multiple View (MView) Definition information.

‑‑ (Note: lower‑case mv)

‑‑ This always occurs on Part Parameter Entity.

‑‑ Holds MView number, rotation and translation

‑‑ transformations, clipping rectangle, attribute

‑‑ bit table and clipping status.

‑‑

‑‑ It is a variable length subrecord. For each

‑‑ MView that is defined, 80 bytes of data are

‑‑ added to the subrecord. A max of 64 MViews are

‑‑ allowed. You may shorten 'mv‑subrecl array

‑‑ if you use less MViews. 'mv‑subrec' is currently

‑‑ dimensioned to the maximum size of 2560=

‑‑ ((80 bytes * 64 views) / 2 bytes per integer).

‑‑ You may wish to change this for your needs.

‑‑

‑‑ MView 1 always exists.

‑‑ You will have to add declarations (as shown

‑‑ below for MView 2 and MView 7). Note that MView

‑‑ information is added to the subrecord in the

‑‑ order in which MViews are CREATED. This is not

‑‑ necessarily in sequence of the MV numbers,

‑‑ although it may happen that way.

‑‑ The ordering of the bits in the bit table

‑‑ 'MVxAttrBitTab' may be implementation dependant.

‑‑‑-----

‑‑ Use with GetSrI, ModSrI, and PutSrI intrinsics

G‑35
Database Format

Database Format

-- 1) Access desired variables in 'mv‑subrec'

-- 2) Substitute for the libuf' parameter ‑‑

integer mv‑subrec(2560)

‑‑ offsets start at 2 for MV 1

integer4 MV1MVNumber @ mv‑subrec + 2

real MV1TransformAr @ mv‑subrec + 6

coord MV1ClipRectLL @ mv‑subrec + 54

coord MV1ClipRectUR @ mv‑subrec + 66

integer MV1AttrBitTab @ mv‑subrec + 78

integer MV1ClipStatFlg @ mv‑subrec + 80

‑‑ offsets start at 82 for next defined MV

integer4 MV2MVNumber @ mv‑subrec + 82

real MV2TransformAr @ mv‑subrec + 86

coord MV2ClipRectLL @ mv‑subrec + 134

coord MV2ClipRectUR @ mv‑subrec + 146

integer MV2AttrBitTab @ mv‑subrec + 158

integer MV2ClipStatFlg @ mv‑subrec + 160

‑‑ offsets start at 162 for next defined MV

integer4 MV7MVNumber @ mv‑subrec + 162

real MV7TransformAr @ mv‑subrec + 166

coord MV7ClipRectLL @ mv‑subrec + 214

coord MV7ClipRectUR @ mv‑subrec + 226

integer MV7AttrBitTab @ mv‑subrec + 238

integer MV7ClipStatFlg @ mv‑subrec + 240

‑‑ offsets start at ? for next defined MV

‑‑[where ? = ((order‑MV‑was‑defined * 80) + 2)]

‑‑integer4 MVxMVNumber @ mv‑subrec + (? + 0)

‑‑real MvxTransformAr @ mv‑subrec
+ (? + 4)

‑‑coor MvxClipRectLL @ mv‑subrec
+ (? + 52)

‑‑coord MvxClipRectUR @ mv‑subrec
+ (? + 64)

‑‑integer MvxAttrBitTab @ mv‑subrec
+ (? + 76)

‑‑integer MvxClipStatFlg @ mv‑subrec
+ (? + 78)

‑‑‑

G‑36
UPL Revision 6.0

Database Format

‑‑‑

‑‑ MV Sub‑record definition ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑---

‑‑‑

‑‑ MView visibility information. This is a

‑‑ bit‑table flagging the MViews in which the

‑‑ entity appears. It occurs on each entity

‑‑ which is put in a multiple view.

‑‑ MV is a variable length subrecord. For each

‑‑ defined MView, there is one bit in the table.

‑‑ The table is allocated 8 bits at a time.

‑‑ MVsubrec is dimensioned here for all 64 bits.

‑‑ You may wish to change this for your needs.

‑‑ The ordering of the bits in the bit table

‑‑ 'BitTableMV' may be implementation dependant.

‑‑‑

‑‑ Use with GetSrI, ModSrI, and PutSrI intrinsics

‑‑ 1) Access desired variables in 'mv‑subrec'

‑‑ 2) Substitute for the libuf' parameter

‑‑ Use UPL intrinsics GetBit & SetBit to

‑‑ manipulate bit‑tables.

‑‑‑

integer MVsubrec(4)

integer BitTableMV @ MVsubrec + 2

‑‑‑

G‑37
Database Format

Database Format

‑‑‑

‑‑ NC Sub‑record definition ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑-

‑‑‑

‑‑ NURB Spline header information.

‑‑‑

‑‑ Contains parameters/flags about an NSPLINE.

‑‑ Nspline degree (d) (1<d<=10)

‑‑ Number polygon control points (1<M<=500)

‑‑ Uniform flag (0=non‑uniform,l=uniform)

‑‑ Rational flag (0=non‑rational, 1=rational)

‑‑ Closed flag (0=open,l=closed)

‑‑ Periodic flag (0=non‑periodic,l=periodic)

‑‑ Curve (0=general NURB, 1=line, 2=circle,

‑‑ 3=ellipse, 4=parabola, 5=hyperbola)

‑‑ Planar flag (0=non‑planar, 1=planar)

‑‑ Display flags (bit table)

‑‑ Polygon display flags (bit‑table:16)

‑‑ Bit 15 is a high order bit (Intel byte order)

‑‑ bit 15: polygon displayed

‑‑ bit 14: direction mark (positive U)

‑‑ bit 13: normal vector displayed

‑‑ bit 12‑0: (reserved)

‑‑ Display quality (q). # of lines per segment

‑‑ (2<=q<=20)

‑‑ Interpolation points flag (I)

‑‑ (O=points not saved,

‑‑ 1=saved in XD subrecords end of entity;

‑‑ see XD subrecord for more info.)

‑‑‑

‑‑ Use with GetSrI, ModSrI, and PutSrI intrinics

‑‑ 1) Access variables named below.

‑‑ 2) Substitute 'NCSubrec' for 'ibuf'param.

‑‑‑

integer NCsubrec(11)

G‑38
UPL Revision 6.0

Database Format

Integer DegreeNC @ Ncsubrec + 2

Integer NumCtrlPtsNC @ Ncsubrec + 4

Integer UniformFlagNC @ Ncsubrec + 6

Integer RationalFlagNC @ Ncsubrec + 8

Integer ClosedFlagNC @ Ncsubrec + 10

Integer PeriodicFlagNC @ Ncsubrec + 12

Integer SplineTypeNC @ Ncsubrec + 14

Integer PlanarFlagNC @ Ncsubrec + 16

Integer DisplayFlagNC @ Ncsubrec + 18

Integer DisplayQualNC @ Ncsubrec + 20

Integer InterPntsSavNC @ Ncsubrec + 22

‑‑‑

G‑39
Database Format

Database Format

‑‑‑

‑‑ NS Sub‑record definition ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑-

‑‑‑

‑‑ NURB Surface header information. ‑‑‑

‑‑ Contains parameters/flags about an Nsurface.

‑‑ Nsurface degree in U (dU) (0<du<=10)

‑‑ Nsurface degree in V (dv) (0<dv<=10)

‑‑ Number poly. control pnts in U (mu) (1<mu<=500)

‑‑ Number poly. control pnts in V (mv) (I<mv<=500)

‑‑ Uniform in U flag (0=non‑uniform,l=uniform)

‑‑ Uniform in V flag (0=non‑uniform,l=uniform)

‑‑ Rational flag (0=non‑rational, 1=rational)

‑‑ Closed in U flag (0=open,l=closed)

‑‑ Closed in V flag (0=open,l=closed)

‑‑ Periodic in U flag(0=non‑periodic,l=periodic)

‑‑ Periodic in V flag(0=non‑periodic,l=periodic)

‑‑ Surface (0=general NURB, 1=plane,

‑‑ 2=right circle, 3= cone, 4=sphere

‑‑ 5=torus, 6=surface of revolution,

‑‑ 7=tabulated cylinder,

‑‑ 8=ruled surface

‑‑ 9=general quadratic surface)

‑‑ Planar flag (0=non‑planar, 1=planar)

‑‑ Display flags (bit table)

‑‑ Bit 15 is a high order bit (Intel byte order)

‑‑ bit 15: polygon displayed

‑‑ bit 14: direction mark (positive U)

‑‑ bit 13: mesh displayed

‑‑ (must be set to 1 to display surface)

‑‑ bit 12: normal vector displayed

‑‑ bit 11‑0: (reserved)

‑‑ Display quality (q). # of lines per segment

‑‑ (1<q<=20)

‑‑ Number of mesh lines in U (ku) (1<ku<20)

‑‑ Number of mesh lines in V (kv) (1<kv<20)

‑‑ Number of trim bounds in surface (t)

‑‑ (see TB subrecord for more info.)

‑‑ Outer boundary trimmed flag (B)

‑‑ (0=outer bound same as surface edges,

G‑40
UPL Revision 6.0

Database Format

-- 1=outer bound is trimmed and saved)

 (see TB subrecord for more info.)

-- Interpolation points flag (I)

-- (0=points not saved,

-- 1=saved in XD subrecords end of entity;

-- see XD subrecord for more info.)

‑‑‑

Use with GetSrI, ModSrI, and PutSrI intrinsics

 1) Access variables named below.

 2) Substitute 'NSsubrec' for 'ibuflparam. ‑‑-

integer NSsubrec(20)

integer DegreesInUNS @ Nssubrec + 2

integer DegreesInVNS @ Nssubrec + 4

integer NumCtrlPtsInUNS @ Nssubrec + 6

integer NumCtrlPtsInVNS @ Nssubrec + 8

integer UniformInUFlagNS @ Nssubrec + 10

integer UniformInVFlagNS @ Nssubrec + 12

integer RationalFlagNS @ Nssubrec + 14

integer ClosedInUFlagNS @ Nssubrec + 16

integer ClosedInVFlagNS @ Nssubrec + 18

integer PeriodicInUFlagNS @ Nssubrec + 20

integer PeriodicInVFlagNS @ Nssubrec + 22

integer SurfaceTypeNS @ Nssubrec + 24

integer PlanarFlagNS @ Nssubrec + 26

integer DisplayFlagNS @ Nssubrec + 28

integer DisplayQualNS @ Nssubrec + 30

integer NumMeshInUNS @ Nssubrec + 32

integer NumMeshInVNS @ Nssubrec + 34

integer NumTrimBndsNS @ Nssubrec + 36

integer OutBndTrimPlagNS @ Nssubrec + 38

integer InterPntsSavNS @ Nssubrec + 40

‑‑-

G‑41
Database Format

Database Format

‑‑‑

‑‑ NT Sub‑record definition ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑-

‑‑‑

‑‑ Nsurface Trim Boundary information. ‑‑‑

‑‑ This subrecord acts as the header for

‑‑ Nsurface Trim Boundaries. It holds the curve

‑‑ degree, count of polygon points, and count

‑‑ of critical points in the trimming boundary.

‑‑ The trimming boundary is a group of 2‑D

‑‑ (in U & V) Nsplines which form a closed loop. ‑‑‑

‑‑ Nsurface trim bounds are present if the

‑‑ surface has been trimmed by commands such as

‑‑ CHANGE NSURFACE TRIM or CHANGE NSURFACE HOLE.

‑‑

‑‑ If the Nsurface has not been trimmed, the 't'

‑‑ flag in the NS subrecord will be set to 0 and

‑‑ the trim bound subrecords will not be present.

‑‑

‑‑ If the Nsurface has been trimmed, the 't' flag

‑‑ in the NS subrecord is set to 1 and a set of

‑‑ 4 subrecords (NT, PU, TB, IU) will be present

‑‑ for each trim boundary effecting the surface.

‑‑

‑‑ If all trim boundaries lay inside the

‑‑ outer boundary of the Nsurface, the 'B' flag

‑‑ in the NS subrecord is set to 0. There will

‑‑ be one set of trim bound subrecords for each

‑‑ inner trim boundary (holes). This is the case

‑‑ for commands like CHANGE NSURF HOLE.

‑‑

‑‑ Commands like CHANGE NSURF TRIM will often

‑‑ make a trim boundary cross an outer bound

‑‑ such that they form a closed loop. This

‑‑ closed loop is stored as the new outer

‑‑ boundary for the Nsurface:

‑‑ The 'B' flag in the NS subrecord is set to 1.

‑‑ The first set of trim boundary subrecords

‑‑ represents the (new trimmed) outer boundaries

G‑42
UPL Revision 6.0

Database Format

-- of the Nsurface. Subsequent sets of trim

-- boundary subrecords represent any 'holes'

-- within the new bounds.

-- Note: the trim boundary must form a

-- closed loop with all outer boundaries it

-- crosses and, it may not enclose more than

-- one portion of the surface.

-- That is, the enclosed portion of the outer

-- boundary combined with the inner intersecting

-- portion of the trim boundary must completely

-- surround (only) one piece of the surface.

--

-- If the trim boundary cannot form a closed

-- loop with outer boundary, the Nsurface will

-- be split into 2 or more Nsurfaces.

--

-- For Personal Designer Rev. 5, number of

-- control points in the trim boundaries

-- must equal the number of interpolation points.

-- Use with GetSrI, ModSrI, and PutSrI intrinsics

-- 1) Access variables named below.

-- 2) Substitute 'NTsubrec' for 'ibuf'param.

integer NTsubrec(3)

integer NsplineDegNT @ NTsubrec + 2

integer NumPolyPntsNT @ NTsubrec + 4

integer NumCritPntsNT @ NTsubrec + 6

G-43
Database Format

Database Format

‑‑‑

‑‑ NV Sub‑record definition ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑-

‑‑‑

‑‑ NURB Knot Vector information.

‑‑‑

-- Holds knot vector for NURB Spline and Surface.

-- This subrecord is only present if the Spline

-- or Surface is non‑rational. The Uniform flag

-- in the NC or NV subrecord must be set to 0.

--

-- Nsplines:

-- Holds 'n' real values giving the knots for

-- the Nspline.

-- Nsurfaces:

-- There will be one NV subrecord to hold the

-- knot vector in the U direction followed by

-- another NV subrecord to hold the knot vector

-- in the V direction. Both knot vectors must be

-- present even when the surface is uniform in

-- U and V direction.

--

-- In both cases the number of knot values (n)

-- will be: n = m + d + 1

--

-- where d = degree of curve (d) or

-- degree of surface (du) or (dv).

-- m = # of control pnts of curve (m) or

-- of the surface (mu) or (mv).

‑‑‑

-- Use with the GetSrR, ModSrR, PutSrR intrinsics

-- 1) Access knot values in 'NVsubrec'

-- 2) Substitute 'NVsubrec' for 'rbuf' param.

-- This is a variable length subrecord. You may

-- need to change the dimension of 'NVsubrec'

-- for your needs.

‑‑‑

real NVsubrec(100)

‑‑‑

G‑44
UPL Revision 6.0

Database Format

‑‑

‑‑ PC Sub‑record definition ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑

‑‑

‑‑ Bezier curve and surface parameters.

‑‑

-- NOTE: PC sub‑record is different for

-- Curves vs Surfaces. Use appropriate one. ‑‑

-- For Bezier curves (PC sub‑record):

-- Number of poles (2 <= np <= 8)

-- Number of vert in curve image (2<=nv<=51)

-- Polygon display flags (bit‑table:16)

-- Bit 15 is a high order bit (Intel byte order)

-- bit 15 : polygon visible

-- bit 14‑0: (reserved)

-- Next is XN sub‑rec. holding 'np' pole coords

-- Next is WD sub‑rec. holding 'nv' image coords

-- Last is TX sub‑rec. described below. ‑‑

-- For Bezier surfaces (PC sub‑record):

-- Number of poles in U direction (NU: 2<=NU<=8)

-- Number vertices in curve image(nv: 2<=nv<=51)

-- Polygon display flags (bit‑table:16)

-- bit 15: polygon displayed

-- bit 14: direction mark displayed (positive U)

-- bit 13: mesh displayed

-- bit 12: normal vector displayed

-- bit 11‑0: (reserved)

-- Number of poles in V direction (NV: 2<=NV<=8)

-- Mesh in U direction (MU)

-- Mesh in V direction (MV)

-- Next are NV XN sub‑rec.s holding NU pole coords

-- Next are MU+MV WD sub‑rec.s holding NV coords

-- Last is TX sub‑rec. described below. ‑‑

-- Use with GetSrI, ModSrI, and PutSrI intrinsics

-- 1) Access variables named below.

-- 2) Substitute 'PCSubrecC' (curve) or

-- or 'PCsubrecS' (surface) the 'ibuf'param.

G‑45
Database Format

Database Format

-- A special version of TX subrecord is

-- used in curves and surfaces for polygon

-- and curve/surface minimum and maximums.

-- Access appropriate variables listed

-- below and substitute 'CurveExtTX' or

-- 'SurfExtTX' for the 'textstring'

-- parameter in calls to RsubrecTX,

-- MsubrecTX, and WsubrecTX. ‑‑

integer PCsubrecC(3)

integer CNumPolesPC @ PCsubrecC + 2

integer CNumVertsPC @ PCsubrecC + 4

integer CDispFlagPC @ PCsubrecC + 6

string CurveExtTX:48

coord
CPolyMinTX @ CurveExtTX + 4

coord
CPolyMaxTX @ CurveExtTX + 16

coord
CMinPointTX @ CurveExtTX + 28

coord
CMaxPointTX @ CurveExtTX + 40

‑‑ Surface version ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑

integer PCsubrecS(6)

integer SNumPolesUPC @ PCsubrecS + 2

integer SnumVertsPC @ PCsubrecS + 4

integer SdispFlagPC @ PCsubrecS + 6

integer SNumPolesVPC @ PCsubrecS + 8

integer SNumMeshUPC @ PCsubrecS + 10

integer SNumMeshVPC @ PCsubrecS + 12

string SurfExtTX:48

coord SpolyMinTX @ SurfExtTX
+ 4

coord SpolyMaxTX @ SurfExtTX
+ 16

coord SminPointTX @ SurfExtTX
+ 28

coord SmaxPointTX @ SurfExtTX
+ 40

‑‑‑

G‑46
UPL Revision 6.0

Database Format

‑‑‑-

‑‑ PH Sub‑record definition ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑-

‑‑‑-

-- Polygon control points.

-- The homogenous coordinates of the control

-- points of the Nspline or Nsurface.

‑‑‑-

-- Each control point is represented by 4 real

-- values for the x, y, z, and h coordinates,

-- respectively.

-- Nsplines: one PH subrecord of 'm' points.

-- Nsurfaces: 'mv' PH subrecords of 'mu' points.

‑‑‑-

-- Use with the GetSrR, ModSrR, PutSrR intrinsics

-- 1) Access homogeneous coordinates using

-- 'PHsubrec' array.

-- 2) Substitute 'PHsubrec' for 'rbuf' param.

-- This is a variable length record. There

-- is no theoretical limit on control points,

-- however, the system may limit you to 500. We

-- use 100 points here. You may need to adjust the

-- size of 'PHsubrec' for your needs.

‑‑‑-

real PHsubrec(100)

‑‑‑-

G‑47
Database Format

Database Format

‑‑‑

‑‑ PU Sub‑record definition ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑-

‑‑‑

‑‑ Trim Bounds (Nspline) Polygon information. ‑‑‑

-- Holds controlling polygon points for NSurface

-- trim bounds (which is an Nspline in U & V).

--

-- For each controlling polygon point, this

-- subrecord holds the homogeneous coordinates:

-- (u, v, h). The number of polygon points is

-- contained in the NT subrecord.

-- (see NT subrecord for more information)

--

-- This subrecord is only present if the Nsurface

-- has been trimmed ('t' flag in NS subrecord

-- is set to 1). It is #2 of 4 subrecords

-- representing the tri=ing Nspline.

-- (see NS subrecord for more information)

--

‑‑‑

-- Use with the GetSrR, ModSrR, PutSrR intrinsics

-- 1) Access knot values in 'PUsubrec'

-- 2) Substitute 'PUsubrec' for 'rbuf' param.

-- This is a variable length subrecord. You may

-- need to change the dimension of 'PUsubrec'

-- for your needs. ‑‑‑

real PUsubrec(100)

‑‑‑

G‑48
UPL Revision 6.0

Database Format

‑‑

‑‑ TB Sub‑record definition ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑-

‑‑‑

‑‑ Trim Bounds (Nspline) Knot Vector information.

‑‑‑

Holds knot vector for NSurface trim bounds

(which is an Nspline in U & V). A TB subrecord

may also be used to hold the knot vector for

critical points in the trimming Nspline.

This subrecord is only present if the Nsurface

has been tri=ed ('t' flag in NS subrecord

is set to 1). It is #3 of 4 subrecords

representing the trimming Nspline.

(see NT subrecord for more information)

The
number of knot values (n)

will be:

n = m + d + 1

where d = degree of trimming Nspline or

 m = # of control pnts in trimming

 Nspline

If used to hold the critical points it will

hold 'lc' real values for the critical point

knot vector.

‑‑‑

Use with the GetSrR, ModSrR, PutSrR intrinsics

1) Access knot values in 'TBsubrec'

2) Substitute 'TBsubrec' for 'rbuf' param.

This is a variable length subrecord. You may

need to change the dimension of 'TBsubrec'

for your needs.

‑‑‑

real TBsubrec(100)

‑‑‑

G‑49
Database Format

Database Format

‑‑‑

‑‑ TG Sub‑record definition ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑-

‑‑‑

-- Tag Fields.

-- Non‑graphical data. Multiple fields.

-- one 4 byte tag number followed by variable

-- length tag fields. Each field consists of

-- a 2‑byte integer byte‑count followed by data. ‑‑‑

-- NOTE: It is far easier and highly recommended

-- that you use the following UPL intrinsics

-- INSTEAD of directly accessing tag fields:

-- TagMib, MibTag, SetTagField, GetTagField.

-- If you must, use with GetSrI, ModSrI, and

-- PutSrI intrinsics

-- 1) Access variables named below.

-- 2) Substitute 'TGsubrec' for the 'ibuf'

-- parameter.

‑‑‑

integer TGsubrec(1000)

integer4 TagNumTG @ Tgsubrec + 2

integer TagFieldlTG @ Tgsubrec + 6

integer TagField1Data @ Tgsubrec + 8

‑‑integer TagField2TG @ Tgsubrec + ??

‑‑integer TagField2Data @ Tgsubrec + ??

‑‑etc

‑‑‑

G‑50
UPL Revision 6.0

Database Format

‑‑‑

‑‑ 'TI' Sub‑record definition ‑ (3 Axis) ‑‑‑‑‑‑‑‑

‑‑-

‑‑ 3‑Axis Toolpath integer information.

‑‑-

integer VLimitInXTI3 @ TI3axis + 2

integer VLimitInYTI3 @ TI3axis + 4

integer VLimitInZTI3 @ TI3axis + 6

integer ToolTypeTI3 @ TI3axis + 8

-- (0=ball, 1=flat,2=flat corner)

integer NumCutPInsTI3 @ TI3axis + 10

integer CutPlaneTI3 @ TI3axis + 12

-- (0=X, 1=Y, 2=Z,3=other)

integer VarStepFlgTI3 @ TI3axis + 14

-- (0=off, 1=on)

integer CrossCutFlgTI3 @ TI3axis + 16

integer SpecialModeTI3 @ TI3axis + 18

-- (1=recut, 2=IntAuto, 3=IntSeries, 4=Proj)

integer ToolTypeRecTI3 @ TI3axis + 20

integer CutDirectTI3 @ TI3axis + 22

-- (0=zigzag, 1=unidirl, 2=unidir2)

integer RoughmodeTI3 @ TI3axis + 24

-- (0=constant, 1=Zrough, 2=Variable)

integer CompFlgTI3 @ TI3axis + 26

-- (0=off, 1=on)

integer AutoZFlgTI3 @ TI3axis + 28

-- (0=off, 1=on)

integer StopOnSurfTI3 @ TI3axis + 30

integer StopOnRestrTI3 @ TI3axis + 32

integer MagPosTI3 @ TI3axis + 34

integer OptRecInAutoTI3 @ TI3axis + 36

integer AutoZTypeTI3 @ TI3axis + 38

-- (0=RetAuto, 1=RetAbs, 2=RetInc)

integer BorderSmoothTI3 @ TI3axis + 40

-- (always 1)

integer SeparatesTPTI3 @ TI3axis + 42

-- (for mapping)

integer WarningLevelTI3 @ TI3axis + 44

-- (for twisted surfaces)

integer AStockPropFlgTI3 @ TI3axis + 46

G‑51
Database Format

Database Format

Integer NumberAxesTI3 @ TI3axis + 62

-- (3, 4, or 5)

integer DirectIn4or5TI3 @ TI3axis + 64

-- (0 or 1)

‑‑‑

Use with GetSrI, ModSrI, and PutSrI intrinsics

1) Access integer variables in 'TI3axis'

2) Substitute for the 'ibuf' parameter ‑‑-

integer TI3axis(32)

‑‑-

G‑52
UPL Revision 6.0

Database Format

‑‑‑

‑‑ 'TI' Sub‑record definition ‑ (2 1/2 Axis) ‑‑

-- 2 1/2 Axis Pocket Toolpath integer info. ‑‑‑

integer TpathPocketType @ TI2Pockt + 2 ‑‑ (1)

integer CutTypeTI2t1 @ TI2Pockt + 4

-- (0=spiral,

-- 1=Zigzag,

-- 2=Profile Every,

-- 3=Profile Last,

-- 20=Spiral + Profile Every,

-- 21=Zigzag + Profile Every,

-- 30=Spiral + Profile Every,

-- 31=Zigzag + Profile Last)

integer CutDirectTI2t1 @ TI2Pockt + 6

-- (0=CLW, l=CCLW)

integer ToolTypeTI2t1
 @ TI2Pockt + 8

-- (0=ball mill, 1=flat mill)

integer CoolantFlgTI2t1 @ TI2Pockt + 10

-- (0=off, 1=on)

integer SpiralDirTI2t1 @ TI2Pockt + 12

-- (0=in, 1=out)

integer RecutTI2t1 @ TI2Pockt + 14

-- (O=off, 1=recut, 2=Lrecut, 3=Crecut)

integer ProfileApprTI2t1 @ TI2Pockt + 16

-- (0=Spiral, 1=Perpendicular)

integer ToolChangeTI2t1 @ TI2Pockt + 18

-- (0=no, 1=Yes)

integer RoughExceptTI2t1 @ TI2Pockt + 20

-- (0=off, 1=rough, 2=rough/except)

integer ThickTI2t1 @ TI2Pockt + 22

-- (0=no, 1=yes)

integer StepOverTI2t1 @ TI2Pockt + 24

-- (0=40% of tool diam. 1=step, 2=scallop)

integer CutterCompTI2t1 @ TI2Pockt + 26

-- (0=off, 1=right, 2=off)

integer CurrentCPLTI2t1 @ TI2Pockt + 28

integer MagPosTI2t1 @ TI2Pockt + 34

G-53
Database Format

Database Format

‑‑‑

-- Use with GetSrI, ModSrI, and PutSrI intrinsics

-- 1) Access integer variables in 'TI2Pockt'

-- 2) Substitute for the 'ibuf' parameter ‑‑-

integer TI2Pockt(32)

‑‑‑

‑‑‑

‑‑ 'TI' Sub‑record definition ‑ (2 1/2 Axis) ‑‑‑

‑‑‑

‑‑ 2 1/2 Axis Mcycle Toolpath integer info. ‑‑‑

integer TPathMcycleType
@ TI2Mcycl + 2 ‑‑(2)

integer PropertyTI2t2
@ TI2Mcycl + 4

-- (0=off, 1=on)

integer ToolTypeTI2t2
@ TI2Mcycl + 8

-- (3=drill, 4=tap)

integer CoolantFlgTI2t2
@ TI2Mcycl + 10

-- (0=off, 1=on)

integer StartPointTI2t2
@ TI2Mcycl + 16

-- (0=no, 1=Yes)

integer ToolChangeTI2t2
@ TI2Mcycl + 18

-- (0=no, 1=Yes)

integer GCodeTI2t2

@ TI2Mcycl + 20

-- (0=off, 1=rough, 2=rough/except)

integer ZTypeTI2t2

@ TI2Mcycl + 22

-- (0=ZDepth, 1=ZAbs, 3=ZIncr, 3=ZDiam)

integer DwellTimeTI2t2
@ TI2Mcycl + 24

integer CurrentCPLTI2t2
@ TI2Mcycl + 28

integer MagPosTI2t2

@ TI2Mcycl + 34

‑‑‑

-- Use with GetSrI, ModSrI, and PutSrI intrinsics

-- 1) Access integer variables in 'TI2Mcycl'

-- 2) Substitute for the 'ibuf' parameter ‑‑‑

integer TI2Mcycl(32)

‑‑‑

G‑54
UPL Revision 6.0

Database Format

‑‑‑

‑‑ 'TI' Sub‑record definition ‑ (2 1/2 Axis) ‑‑‑‑

‑‑-

‑‑ 2 1/2 Axis Profile Contour integer info.

‑‑-

integer TPathPContType
@ TI2PCont + 2 ‑‑(3)

integer ClosedValTI2t3
@ TI2PCont + 4

-- (0=Between, 1=Complete)

integer CutDirectTI2t3
@ TI2PCont + 6

-- (0=CLW, 1=CCLW)

integer ToolTypeTI2t3
@ TI2PCont + 8

-- (0=ball mill, 1=flat mill)

integer CoolantFlgTI2t3
@ TI2PCont + 10

-- (0=off, 1=on)

integer ProfileApprTI2t3
@ TI2PCont + 16

-- (0=spiral, 1=perpendicular)

integer ToolChangeTI2t3
@ TI2PCont + 18

-- (0=no, 1=yes)

integer AvoidFlgTI2t3
@ TI2PCont + 20

-- (0=no, I=yes)

integer ThickFlgTI2t3
@ TI2PCont + 22

-- (0=no, 1=Yes)

integer CutterCompTI2t3
@ TI2PCont + 26

-- (0=off, 1=right, 2=left)

integer CurrentCPLTI2t3
@ TI2PCont + 28

integer MagPosTI2t3

@ TI2PCont + 34

‑‑‑

-- Use with GetSrI, ModSrI, and PutSrI intrinsics

-- 1) Access integer variables in 'TI2PCont'

-- 2) Substitute for the 'ibuf' parameter

‑‑-

integer TI2PCont(32)

‑‑-

G‑55
Database Format

Database Format

‑‑
‑‑ 'TI' Sub‑record definition ‑ (2 1/2 Axis) ‑‑‑

‑‑

‑‑ 2 1/2 Axis Point to Point integer info.

‑‑

integer TPathPnt2PntType
@ TI2PTP + 2 ‑‑(4)

--

integer ToolTypeTI2t4
@ TI2PTP + 8

-- (0=ball mill, 1=flat mill)

integer CoolantFlgTI2t4
@ TI2PTP + 10

-- (0=off, 1=on)

--

integer CutterCompTI2t4
@ TI2PTP + 26

-- (0=off, 1=right, 2=left)

integer CurrentCPLTI2t4
@ TI2PTP + 28

integer MagPosTI2t4

@ TI2PTP + 34

‑‑‑

-- Use with GetSrI, ModSrI, and PutSrI intrinsics

-- 1) Access integer variables in 'TI2PTP'

-- 2) Substitute for the 'ibuf' parameter

‑‑-

integer TI2PTP(32)

‑‑-

G‑56
UPL Revision 6.0

Database Format

‑‑

‑‑ 'TI' Sub‑record definition ‑ (2 1/2 Axis) ‑‑‑

‑‑

‑‑ 2 1/2 Axis Thread Toolpath integer info.

‑‑

integer TPathThreadType
@ TI2Thred + 2 ‑‑ (7)

integer ThreadTypeTI2t7
@ TI2Thred + 4

-- (0=OD, 1=ID)

integer ApprTypeTI2t7
@ TI2Thred + 6

-- (0=Straight, 1=XFirst, 2=YFirst)

integer ToolTypeTI2t7
@ TI2Thred + 8

-- (11=threading)

integer CoolantFlgTI2t7
@ TI2Thred + 10

-- (0=off, 1=on)

integer CycleTI2t7
@ TI2Thred + 12

-- (0=G33, 1=G76)

integer NumberCutsTI2t7
@ TI2Thred + 14

integer NumStrPassTI2t7
@ TI2Thred + 16

integer ToolChangeTI2t7
@ TI2Thred + 18

-- (0=none, 1=tool change,

-- 11=tool change & intermediate)

integer NumOptPassTI2t7
@ TI2Thred + 20

integer CutSideTI2t7
@ TI2Thred + 22

-- (0=above center, 1=below center)

--

integer CurrentCPLTI2t7
@ TI2Thred + 28

--

integer MagPosTI2t7

@ TI2Thred + 34

--

integer UnitsTI2t7

@ TI2Thred + 36

-- (0=inches, 1=metric) ‑‑‑

-- Use with GetSrI, ModSrI, and PutSrI intrinsics

-- 1) Access integer variables in ITI2Thred'

-- 2) Substitute for the 'ibuf' parameter ‑‑integer TI2Thred(32) ‑‑‑

G‑57
Database Format

Database Format

‑‑

‑‑ 'TI' Sub‑record definition ‑ (2 1/2 Axis) ‑‑‑

‑‑

‑‑ 2 1/2 Axis Lathe Toolpath integer info.

‑‑

integer TPathLatheType
@ TI2Lathe + 2 ‑‑ (8)

integer LatheTypeTI2t8
@ TI2Lathe + 4

-- (0=OD, 1=ID, 2=Face, 3=Profile Last,

-- 10=OD groove, 11=ID groove, 12=face groove,

-- 30=OD Undercut, 31=ID Undercut)

integer ApprTypeTI2t8
@ TI2Lathe + 6

-- (0=straight, 1=XFirst, 2=YFirst)

integer ToolTypeTI2t8
@ TI2Lathe + 8

-- (5=turn triangle, 6=face triangle

-- 7=diamond, 8=square,

-- 9=square w/radius, 10=button)

integer CoolantFlgTI2t8
@ TI2Lathe + 10

-- (0=off, 1=on)

integer OffsetTI2t8

@ TI2Lathe + 12

-- (0=radius, 1=Theoretical sharp corner)

integer ProfileTI2t8
@ TI2Lathe + 14

-- (0=off, 1=on, 2=only)

integer CSSTI2t8

@ TI2Lathe + 16

-- (0=off, 1=on)

integer ToolChangeTI2t8
@ TI2Lathe + 18

-- (0=none, 1=toolchange,

-- 2=toolchange & intermediate)

integer CutDirectionTI2t8 @ TI2Lathe + 20

-- (1=CRight, 2=CLeft, 3=CUp, 4=CDown)

integer CutSideTI2t8
@ TI2Lathe + 22

-- (0=above center, 1=below center)

integer CurrentCPLTI2t8
@ TI2Lathe + 28

integer MagPosTI2t8

@ TI2Lathe + 34

‑‑‑

-- Use with GetSrI, ModSrI, and PutSrI intrinsics

-- 1) Access integer variables in 'TI2Lathe'

-- 2) Substitute for the 'ibuf' parameter ‑‑-

integer TI2Lathe(32) ‑‑‑

G‑58
UPL Revision 6.0

Database Format

‑‑‑

‑‑ 'TI' Sub‑record definition ‑ (2 1/2 Axis) ‑‑‑

‑‑‑

‑‑ 2 1/2 Axis Lcycle Toolpath integer info. ‑‑‑

integer TPathLcycleType
@ TI2Lcycl + 2 ‑‑(9)

integer ToolTypeTI2t9
@ TI2Lcycl + 8

-- (12=drill, 13=tap)

integer CoolantFlgTI2t9
@ TI2Lcycl + 10

-- (0=off, I=on)

integer ToolChangeTI2t9
@ TI2Lcycl + 18

-- (0=no, 1=Yes)

integer GCodeTI2t9

@ TI2Lcycl + 20

-- (0=off, 1=rough, 2=rough/except)

integer ZTypeTI2t9

@ TI2Lcycl + 22

-- (0=ZDepth, 1=ZAbs,
3=ZIncr, 3=ZDiam)

integer DwellTimeTI2t9
@ TI2Lcycl + 24

integer CurrentCPLTI2t9
@ TI2Lcycl + 28

integer MagPosTI2t9

@ TI2Lcycl + 34

‑‑‑

-- Use with GetSrI, ModSrI, and PutSrI intrinsics

-- 1) Access integer variables in 'TI2Lcycl'

-- 2) Substitute for the 'ibuf' parameter ‑‑-

integer TI2Lcycl(32)

‑‑-

G‑59
Database Format

Database Format

‑‑‑

‑‑ 'TI' Sub‑record definition ‑ (2 1/2 Axis) ‑‑‑

‑‑‑

-- 2 1/2 Axis Lathe Point to Point Toolpath

-- integer info. ‑‑‑

integer TPathLPTPType
@ TI2LPTP + 2 ‑‑(10)

integer ToolTypeTI2t10
@ TI2LPTP + 8

-- (5=turn triangle, 6=face triangle

-- 7=diamond, 8=square, 9=square w/radius,

-- 10=button)

integer CoolantFlgTI2t10
@ TI2LPTP + 10

-- (0=off, l=on)

integer OffsetTI2t10
@ TI2LPTP + 12

-- (0=Radius, 1=Theoritcal sharp corner)

integer CurrentCPLTI2t10
@ TI2LPTP
+ 28

integer MagPosTI2t10
@ TI2LPTP
+ 34

‑‑‑

-- Use with GetSrI, ModSrI, and PutSrI intrinsics

-- 1) Access integer variables in 'TI2LPTP'

-- 2) Substitute for the 'ibuf' parameter ‑‑-

integer TI2LPTP(32)

‑‑-

G‑60
UPL Revision 6.0

Database Format

‑‑‑--

‑‑ 'TR' Sub‑record definition ‑ (3 Axis) ‑‑--

‑‑ 3 Axis Toolpath real information. ‑‑‑--

coord VMinTR3
@ TR3axis + 2

coord VMaxTR3
@ TR3axis + 14

real ToolDiameterTR3
@ TR3axis + 26

real CornerRadiusTR3
@ TR3axis + 30

real SpindleTR3
@ TR3axis + 34

real FeedrateRapidTR3
@ TR3axis + 38 ‑‑(5000.0)

real FeedrateWorkTR3
@ TR3axis + 42

real FeedratePlunTR3
@ TR3axis + 46

real ToleranceTR3
@ TR3axis + 50

real CollisionTolTR3
@ TR3axis + 54 ‑‑(0.0)

real StepOverTR3
@ TR3axis + 58

real ScallopHghtTR3
@ TR3axis + 62

real StockTR3
@ TR3axis + 66

real CuttingAngTR3
@ TR3axis + 70

real PrevDiamTR3
@ TR3axis + 74

real PrevCornerRadTR3
@ TR3axis + 78

real MaximumDepthTR3
@ TR3axis + 82

real RecutAngleTR3
@ TR3axis + 86 ‑‑(MinAng)

real CrossCutAngleTR3 @ TR3axis + 90 ‑‑(45.0)

real AbsZRetrctValTR3 @ TR3axis + 94

real IncZRetrctValTR3 @ TR3axis + 98

real RetractRatioTR3 @ TR3axis + 102

real MinSetOverTR3 @ TR3axis + 106 ‑‑(VarMin)

real ZoomValueMapTR3 @ TR3axis + 110 ‑‑(0<ZV<l)

‑‑‑--

-- Use with GetSrR, ModSrR, and PutSrR intrinsics

-- 1) Access real variables in 'TR3axis'

-- 2) Substitute for the Irbuf' parameter

‑‑---

real TR3axis(28)

‑‑---

G‑61
Database Format

Database Format

‑‑‑

‑‑ 'TR' Sub‑record definition ‑ (2 1/2 Axis) ‑‑

‑‑ 2 1/2 Axis Pocket Toolpath real information. ‑‑‑

coord
CPLXaxisVctTR2t1 @ TR2Pockt + 2

coord
CPLYaxisVctTR2t1 @ TR2Pockt + 14

real
ToolDiamTR2t1 @ TR2Pockt + 26

--

real
SpeedTR2t1 @ TR2Pockt + 34

--

real
FeedTR2t1 @ TR2Pockt + 42

--

real
ToleranceTR2t1 @ TR2Pockt + 50

real
RoughValueTR2t1 @ TR2Pockt + 54

real
StepOverTR2t1
 @ TR2Pockt + 58

real
ScallopHgtTR2t1 @ TR2Pockt + 62

real
StockTR2t1 @ TR2Pockt + 66

real
ZiZagAngleTR2t1 @ TR2Pockt + 70

real
PocketLevelTR2t1 @ TR2Pockt + 74

real
ApproachTR2t1
 @ TR2Pockt + 78

real
CutDepthTR2t1
 @ TR2Pockt + 82

real
ZwinTR2t1 @ TR2Pockt + 86 ‑‑(MinAng)

real
ZLevelTR2t1 @ TR2Pockt + 90 ‑‑(45.0)

real
ThicknessTR2t1 @ TR2Pockt + 94

real
PlungeAngleTR2t1 @ TR2Pockt + 98

real
MaxZDTR2t1 @ TR2Pockt + 102

‑‑‑

-- Use with GetSrR, ModSrR, and PutSrR intrinsics

-- 1) Access real variables in 'TR2Pockt'

-- 2) Substitute for the 'rbuf' parameter ‑‑‑

real
TR2Pockt(28)

‑‑‑

G‑62
UPL Revision 6.0

Database Format

‑‑‑

‑‑ 'TR' Sub‑record definition ‑ (2 1/2 Axis) ‑‑

‑‑ 2 1/2 Axis Mcycle Toolpath real information. ‑‑‑

coord CPLXaxisVctTR2t1 @ TR2mcycl + 2

coord CPLYaxisVctTR2t1 @ TR2Mcycl + 14

real ToolDiamTR2t1 @ TR2Mcycl + 26

real ZDepthTR2t1 @ TR2Mcycl + 30

real SpeedTR2t1 @ TR2Mcycl + 34

--

real FeedTR2t1 @ TR2Mcycl + 42

real StartXTR2t1 @ TR2Mcycl + 46

real StartYTR2t1 @ TR2Mcycl + 50

real StartZTR2t1 @ TR2Mcycl + 54

--

real AvoidDistTR2t1 @ TR2Mcycl + 62

real CutInDistTR2t1 @ TR2Mcycl + 66

real ZDiameterTR2t1 @ TR2Mcycl + 70

real XDepthTR2t1 @ TR2Mcycl + 74

real RetrApprTR2t1 @ TR2Mcycl + 78

real DMinTR2t1 @ TR2Mcycl + 82

real DmaxTR2t1 @ TR2Mcycl + 86

real ZLevelTR2t1 @ TR2Mcycl + 90

real ToolTipAngTR2t1 @ TR2Mcycl + 94

real HoleDepthTR2t1 @ TR2Mcycl + 98

real ToolChangeXTR2t1 @ TR2Mcycl + 102

real ToolChangeYTR2t1 @ TR2Mcycl + 106

real ToolChangeZTR2t1 @ TR2Mcycl + 110

‑‑‑

-- Use with GetSrR, ModSrR, and PutSrR intrinsics

-- 1) Access real variables in 'TR2Pockt'

-- 2) Substitute for the Irbuf' parameter

‑‑-

real TR2Mcycl(28)

‑‑-

G‑63
Database Format

Database Format

‑‑‑

‑‑ 'TR' Sub‑record definition ‑ (2 1/2 Axis) ‑‑

‑‑ 2 1/2 Axis Profile Contour Toolpath real info. ‑‑‑

coord CPLXaxisVctTR2t3 @ TR2PCont + 2

coord CPLYaxisVctTR2t3 @ TR2PCont + 14

real ToolIDiamTR2t3 @ TR2Pcont + 26

--

real SpeedTR2t3 @ TR2Pcont + 34

--

real FeedTR2t3 @ TR2Pcont + 42

--

real ToleranceTR2t3 @ TR2Pcont + 50

--

real ZAvoidTR2t3 @ TR2Pcont + 62

real StockTR2t3 @ TR2Pcont + 66

--

real ProfZLevelTR2t3 @ TR2Pcont + 74

real RetrApprTR2t3 @ TR2Pcont + 78

real CutDepthTR2t3 @ TR2Pcont + 82

real ZwinTR2t3 @ TR2Pcont + 86 ‑‑(MinAng)

real ZLevelTR2t3 @ TR2Pcont + 90 ‑‑(45.0)

real ThicknessTR2t3 @ TR2Pcont + 94

real MaxDTR2t3 @ TR2Pcont + 102

‑‑‑

-- Use with GetSrR, ModSrR, and PutSrR intrinsics

-- 1) Access real variables in 'TR2PCont'

-- 2) Substitute for the 'rbuf' parameter ‑‑‑

real
TR2PCont(28)

‑‑‑

G‑64
UPL Revision 6.0

Database Format

‑‑‑

‑‑ 'TR' Sub‑record definition ‑ (2 1/2 Axis) ‑‑

-- 2 1/2 Axis Profile Point to Point Toolpath

-- real information. ‑‑‑

coord CPLXaxisVctTR2t4 @ TR2PPTP + 2

coord CPLYaxisVctTR2t4 @ TR2PPTP + 14

real ToolDiamTR2t4 @ TR2PPTP
+ 26

--

real SpeedTR2t4 @ TR2PPTP
+ 34

--

real FeedTR2t4 @ TR2PPTP
+ 42

--

real ToleranceTR2t4 @ TR2PPTP
+ 50

--

real ProfZ1evelTR2t4 @ TR2PPTP
+ 74

real RetrApprTR2t4 @ TR2PPTP
+ 78

‑‑‑

-- Use with GetSrR, ModSrR, and PutSrR intrinsics

-- 1) Access real variables in 'TR2PPTP'

-- 2) Substitute for the 'rbuf' parameter

‑‑-

real TR2PPTP(28)

‑‑-

G‑65
Database Format

Database Format

‑‑‑

‑‑ 'TR' Sub‑record definition ‑ (2 1/2 Axis) ‑‑

‑‑ 2 1/2 Axis Thread Toolpath real information. ‑‑‑

coord CPLXaxisVctTR2t7 @ TR2Thred + 2

coord CPLYaxisVctTR2t7 @ TR2Thred + 14

real ToolWidthTR2t7 @ TR2Thred + 26

real SpeedTR2t7 @ TR2Thred + 34

real FeedTR2t7 @ TR2Thred + 42

real ToleranceTR2t7 @ TR2Thred + 50

real PitchTR2t7 @ TR2Thred + 54

real MaxCutDepthTR2t7 @ TR2Thred + 58

real ThreadDepthTR2t7 @ TR2Thred + 62

real TaperTR2t7 @ TR2Thred + 66

real RetractTR2t7 @ TR2Thred + 78

real ApprAngleTR2t7 @ TR2Thred + 82

real RetrAngleTR2t7 @ TR2Thred + 86

real ApprOffsetTR2t7 @ TR2Thred + 90

real RetrOffsetTR2t7 @ TR2Thred + 94

real XGaugeTR2t7 @ TR2Thred + 102

real YGaugeTR2t7 @ TR2Thred + 106

‑‑‑

-- Use with GetSrR, ModSrR, and PutSrR intrinsics

-- 1) Access real variables in 'TR2Thred'

-- 2) Substitute for the 'rbuf' parameter

‑‑-

real TR2Thred(28)

‑‑-

G‑66
UPL Revision 6.0

Database Format

‑‑‑

‑‑ 'TR' Sub‑record definition ‑ (2 1/2 Axis) ‑‑

‑‑ 2 1/2 Axis Lathe Toolpath real information. ‑‑‑

coord CPLXaxisVctTR2t8
@ TR2Lathe + 2

coord CPLYaxisVctTR2t8
@ TR2Lathe + 14

real ToolWidthTR2t8
@ TR2Lathe + 26

-- (Tool Width if tool type is square

-- otherwise, Tool Nose Radius)

real ToolNoseRadTR2t8 @ TR2Lathe + 30

-- (If tool type is is square w/radius this

-- holds the ToolNoseRadius)

real SpeedTR2t8 @ TR2Lathe + 34

--

real FeedTR2t8 @ TR2Lathe + 42

--

real ToleranceTR2t8 @ TR2Lathe + 50

--

real MaxTDepthTR2t8 @ TR2Lathe + 58

real MaxCutDepthTR2t8 @ TR2Lathe + 62

real StockTR2t8 @ TR2Lathe + 66

real BackAngleTR2t8 @ TR2Lathe + 70

real StartRadCCSTR2t8 @ TR2Lathe + 74

--

real XGaugeTR2t8 @ TR2Lathe + 102

real YGaugeTR2t8 @ TR2Lathe + 106

‑‑‑

-- Use with GetSrR, ModSrR, and PutSrR intrinics

-- 1) Access real variables in 'TR2Lathe'

-- 2) Substitute for the 'rbuf' parameter

‑‑-

real TR2Lathe(28)

‑‑-

G‑67
Database Format

Database Format

‑‑‑

‑‑ 'TR' Sub‑record definition ‑ (2 1/2 Axis) ‑‑

‑‑ 2 1/2 Axis Lcycle Toolpath real information. ‑‑‑

coord CPLXaxisVctTR2t9 @ TR2Lcycl + 2

coord CPLYaxisVctTR2t9 @ TR2Lcycl + 14

real ToolDiamTR2t9 @ TR2Lcycl + 26

real DepthTR2t9 @ TR2Lcycl + 30

‑‑ (ABS or INC value)

real SpeedTR2t9 @ TR2Lcycl + 34

--

real FeedTR2t9 @
 TR2Lcycl + 42

--

real CutInDistTR2t9 @ TR2Lcycl + 66

real ZDiameterTR2t9 @
 TR2Lcycl + 70

real XDepthTR2t9 @
 TR2Lcycl + 74

real RetrApprTR2t9 @
 TR2Lcycl + 78

--

real TTipAngleTR2t9 @
 TR2Lcycl + 94

real HoleDepthTR2t9 @
 TR2Lcycl + 98

real XGaugeTR2t9 @
 TR2Lcycl + 102

real YGaugeTR2t9 @
 TR2Lcycl + 106

‑‑‑

-- Use with GetSrR, ModSrR, and PutSrR intrinsics

-- 1) Access real variables in 'TR2Lcycl'

-- 2) Substitute for the 'rbuf' parameter ‑‑‑

real
TR2Lcycl(28)

‑‑‑
G‑68
UPL Revision 6.0

Database Format

‑‑‑

‑‑ 'TR' Sub‑record definition ‑ (2 1/2 Axis) ‑‑‑

‑‑‑

-- 2 1/2 Axis Lathe Point to Point

-- Toolpath real information. ‑‑‑

coord CPLXaxVctTR2t10 @ TR2LPTP + 2

coord CPLYaxVctTR2t10 @ TR2LPTP + 14

real ToolWidthTR2t10 @ TR2LPTP + 26

-- (Tool Width if tool type is square

-- otherwise, Tool Nose Radius)

real ToolNoseRaTR2t10 @ TR2LPTP + 30

-- (If tool type is is square w/radius this

-- holds the Tool NoseRadius)

real SpeedTR2t10 @ TR2LPTP
+ 34

--

real FeedTR2t10 @ TR2LPTP
+ 42

--

real ToleranceTR2t10 @ TR2LPTP
+ 50

--

real MaxTDepthTR2t10 @ TR2LPTP
+ 58

--

real XGaugeTR2t10 @ TR2LPTP
+ 102

real YGaugeTR2t10 @ TR2LPTP
+ 106

‑‑‑

-- Use with GetSrR, ModSrR, and PutSrR intrinsics

-- 1) Access real variables in 'TR2LPTP'

-- 2) Substitute for the 'rbuf' parameter ‑‑-

real TR2LPTP(28)

‑‑-

G‑69
Database Format

Database Format

‑‑‑

-- 'TS' Sub‑record definition ‑ (2 1/2 Axis) ‑‑‑-

‑‑‑

‑‑ 2 1/2 Axis Toolpath Tool Spin information. ‑‑‑

-- Holds Tool Spin Direction and Feed Rate.

-- Tool Spin Direction:

-- (‑1, 0, 1)

-- Tool Feed Rate:

-- (0=feed, 1=rapid, etc)

--

-- TS subrecord appears in a triple of TS, XN, AC

-- to represent a toolpath. The XN subrecord may

-- hold up to 1350 vertices. There may be more

-- one triple of these subrecords if the toolpath

-- has more than 1350 vertices. ‑‑‑

-- Use with GetSrI, ModSrI, and PutSrI intrinsics

-- 1) Access integer variables in 'TSsubrec'

-- 2) Substitute for the 'ibuf, parameter ‑‑-

integer TSsubrec(2)

integer ToolSpinDirTS @ TSsubrec + 2

integer ToolFeedRateTS @ TSsubrec + 4 ‑‑‑

‑‑‑

‑‑ WD Sub‑record definition ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑-

‑‑‑

-- Use with GetSrC, ModSrC, and PutSrC intrinsics

-- 1) Assign desired coordinates to 'WDsubrec'

-- 2) Substitute for 'WDsubrec' the 'Cbuf'

-- parameter.

-- Note: WD sub‑record has a variable length.

-- You may have to adjust size of WDsubrec array

-- for your needs. ‑‑‑

coord WDsubrec(100)

‑‑‑

G‑70
UPL Revision 6.0

Database Format

‑‑‑

‑‑ XD Sub‑record definition ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑-

‑‑‑

‑‑ Interpolation data points.

‑‑‑

-- If an Nspline or Nsurface was created using

-- interpolation data points,
those points are

-- saved in XD subrecords.

-- Nsplines: the 'I' flag in the Nspline header

--
 subrecord NC must be 1. The XD

--
 subrecord will contain Im' points.

--
 (see NC subrecord for more info)

-- Nsurfaces: the 'I' flag in the Nsurface header

--
 subrecord NS must be 1. There will

--
 'pv' XD subrecords containing 'pu'

--
 data points, where:

--

pv = nv – 2 * d

--

pu = nu – 2 * d

--
 (see NS subrecord for more info)

‑‑‑

-- Use with GetSrC, ModSrC, and PutSrC intrinsics

-- 1) Access data points in array 'XDsubrec'.

-- 2) Substitute 'XDsubrec' for 'cbuf'param.

-- This is a variable length subrecord. You may

-- need to change the dimension of 'XDsubrec'

-- for your needs.

‑‑‑

coord XDsubrec(100)

‑‑‑

G‑71
Database Format

Database Format

‑‑
-- XP Sub‑record definition ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑--‑‑

-- Cross Hatch Parameters.

‑‑--

-- Holds angle, spacing, offset, pattern, and

-- number of cross hatch boundaries

-- Pattern: ‑1 = solid fill; 0 = standard;

-- >0 = special

‑‑‑

-- Use with GetSrR, ModSrR, and PutSrR intrinsics

-- 1) Access variables named below.

-- 2) Substitute 'XPsubrec' for 'rbuf'param.

‑‑‑

real XPsubrec(4)

real AngleXP @ XPsubrec + 2

real SpacingXP @ XPsubrec + 6

real OffsetXP @ XPsubrec + 10

integer PatternXP @ XPsubrec + 14

integer NumBoundXP @ XPsubrec + 16

‑‑‑

‑‑

-- XT Sub‑record definition ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑--‑‑

-- 3‑D Extents for Nsplines and Nsurfaces.

‑‑--

Holds coordinates of opposite corners of a 3‑D

box containing the of a Nspline or Nsurface

and their controlling polygons.

‑‑--

Use with GetSrC, ModSrC, and PutSrC intrinics

 1) Access variables named below.

 2) Substitute 'XTsubrec' for 'cbuf'param.

‑‑‑-

coord XTsubrec(4)

coord PolygonMinXT @ XTsubrec + 2

coord PolygoriMaxXT @ XTsubrec + 14

coord CurveSurfaceMinXT @ XTsubrec + 26

coord CurveSurfaceMaxXT @ XTsubrec + 38

‑‑‑-

G‑72
UPL Revision 6.0

Database Format

Direct Database Access Intrinsic Procedures

The MIB subrecord may be accessed usine, the intrinsics ReadEnt, WriteEnt, and AddEnt. Use ReadEnt to read the MIB record of an entity. A combination of ReadEnt and WriteEnt should be used to modify an entity's MIB portion. AddEnt should be used when adding an entity to the database.

The following is a list of special procedures to read, modify, and write, the Part Data File (PDF) subrecord specified by the last two letters of the name:

RSubRecAC
MSubRecAC
WSubRecAC

RSubRecAP
MSubRecAP
WSubRecAP

RSubRecDS
MSubRecDS
WSubRecDS

RSubRecEX
MSubRecEX
WSubRecEX

RSubRecIL
MSubRecIL
WSubReelL

RSubRecL1
MSubRecL1
WSubRecL1

RSubRecL2
MSubReeL2
WSubRecL2

RSubReePA
MSubRecPA
WSubRecPA

RSubRecPX
MSubRecPX
WSubRecPX

RSubReeTD
MSubRecTD
WSubRecTD

RSubRecTF
MSubRecTF
WSubRecTF

RSubRecTX
MSubRecTX
WSubRecTX

RSubRecVN
MSubRecVN
WSubRecVN

RSubRecXH
MSubRecXH
WSubRecXH

RSubRecXN
MSubRecXN
WSubRecXN

RSubRecXZ
MSubRecXZ
WSubRecXZ

The next group of procedures provides access to the remaining PDF subrecords. Most of the subrecords not supported by the above routines are documented above. These routines may be used to access them. The data types supported are Integer, Real, Coord, and String. For each data type, there is a routine to Get (read), Modify, and Put (write) a subrecord. These routines are:

GetSr
ModSr
Putsr

GetSrC
ModSrC
Putsrc

GetSrl
ModSrl
PutsrI

GetSrR
ModSrR
PutSrR

GetSrS
ModSrS
Putsrs

G-73
Database Format

Database Format

AddEnt

Type

Intrinsic Procedure
Database Access

Purpose

Adds the MIB portion a new entity to the end of the database.

Syntax

AddEnt(etype, data(1), mib, ierr)

Parameters

etype:
Integer expression (input)

Specifies the entity type number for the new entity. Values are:

1
Line
14
Ellipse

2
String
15
Construction line

3
Arc
16
Curve (cpole)

4
Text
17
Surface (spole)

5
Point
18
Plane

6
Linear dimension
30
Nspline

7
Label, point dimension
31
Nsurface

8
Radial dimension
35
3‑axis toolpath

9
 Angular dimension
36
2‑1/2‑axis toolpath

10
 Cross‑hatching
145
Display image

11
Figure instance
146
View

12
Diameter dimension
147
Figure image list

13
MView (multiple view)
148
Extents

data:
Integer array of 5 elements (input)

Gives the attributes for the new entity. The array elements are:

1
Layer number‑, if negative one, use active layer.

2
View of visibility.

3
Group number.

4
Line font number.

5
Color number, if 0 use current color.

mib:
Integer4 variable (input/output)

Returns the Master Index Block (MIB) number of the new entity.

ierr:
Integer variable (input/output)

Returns an error number after operation; zero indicates a

successful operation. Other values indicate and error.

G‑74
UPL Revision 6.0

Database Format

GetSr

Type

Intrinsic Procedure
Database Access

Purpose

Allows direct reading of database subrecords that consist of only integer

data. No data type conversion or variable basing is necessary.

WARNING: This procedure is for advanced users only.

Syntax

GetSr(mib, srtype, occur nbytesget, nbytesgot, buf(1), error)

Parameters

mib:
Integer4 expression (input)

Specifies the MIB number of the entity whose subrecord is

read from.

srtype:
Strino expression of 2 characters (input)

Specifies the type of subrecord to retrieve. lf the parameter is an empty string, the procedure retrieves any type of subrecord.

occur:
Integer expression (input)

Specifies which occurrence of the srtype subrecord to get. lt is

used if the Part Data File (PDF) portion of the entity record has

more than one srtype subrecord to read. lf this is not the

case,set the occur parameter to one.

nbytesget:
Integer expression (input)

Specifies the number of bytes to read from the subrecord. lf

nbytesget equals negative one, all the bytes in the subrecord

will be read. Note that there are two bytes of data per integer.

nbytesgot:
Integer variable (input/output)

Returns the number of bytes actually retrieved from the subrecord.

buf:
String variable, output

Data retrieved form the database subrecord is placed in this

variable. lt may contain several different data types. To

extract this information, variables of the appropriate types

should be based to the buf string variable.

G‑75
Database Format

Database Format

error:
Integer variable (input/output)

Returns the error condition:

0
No errors were found.

1
An IO error was found.

2
There are not enough bytes to read

(nbytesget is too big).

3
The subrecord was not found.

4
An invalid MIB number was given.

Example

Get_Sr(Mib, "PL", 1, ‑1, NBytesGot, Buf(1), Error)

G‑76
UPL Revision 6.0

Database Format

GetSrC

Type

Intrinsic Procedure
Database Access

Purpose

Allows direct reading of database subrecords that consist of only coordinate data. No data type conversion or variable basing is necessary.

WARNING: This procedure is for advanced users only.

Syntax

GetSrC(mib, srtype, occur nbytesget, nbytesgot, cbuf(1), error)

Parameters

mib:
Integer4 expression (input)

Specifies the MIB number of the entity that the subrecord is

read from.

srtype:
String expression of 2 characters (input)

Specifies the type of subrecord to retrieve. lf the parameter is

an empty string, the procedure retrieves any type of subrecord.

occur:
Integer expression (input)

Speeifies which occurrence of the srtype subrecord to get. It is

used if the Part Data File (PDF) portion of the entity record has

more than one srtype subrecord to read. lf the PDF portion of

the entity record does not have more than one srtype subrecord

to read, set the occur parameter to one.

nbytesget:
Integer expression (input)

Specifies the number of bytes to read from the subrecord. lf

nbytesget equals negative one, all the bytes in the subrecord

will be read. Note that there are 12 bytes of data per

coordinate.

nbytesgot:
Integer variable (input/output)

This returns the number of bytes actually retrieved from the

subrecord.

G‑77
Database Format

Database Format

cbuf:
Coordinate array of nbytes/12 elements (input/output)

This is the buffer that returns the subrecord data. You must

declare cbuf to have enough array elements for the largest

subrecord that will be retrieved. The maximum size is 1.000

elements.

error:
Integer variable (input/output)

Returns the error condition.

0
No errors were found.

1
An IO error was found.

2
There are not enough bytes read

(nbytesget is too big).

3
The subrecord was not found.

4
An invalid MIB number was given.

Examples

Get_Sr_C(StrMib,"XN", 1, ‑1 ,NbytesGot, Verts (1), Error)

Get_Sr_C(LinMib,"XZ", 1, 24, NbytesGot, Verts (1), Error)

G‑78
UPL Revision 6.0

Database Format

GetSrI

Type

Intrinsic Procedure
Database Access

Purpose

Allows direct reading of database subrecords that consist of only integer data. No data type conversion or variable basing is necessary.

WARNING: This procedure is for advanced users only.

Syntax

GetSrl(mib, srtype, occur, nbytesget, nbytesgot, ibuf(1), error)

Parameters

mib:
Integer4 expression (input)

Specifies the MIB number of the entity that the subrecord is

read from.

srtype:
String expression of 2 characters (input)

Specifies the type of subrecord to retrieve. lf the parameter is

an empty string, the procedure retrieves any type of subrecord.

occur:
Integer expression (input)

Specifies which occurrence of the srtype subrecord to get. lt is

used if the Part Data File (PDF) portion of the entity record has

more than one srtype subrecord to read. lf the PDF portion of

the entity record does not have more than one srtype subrecord

to read, set the occur Parameter to one.

nbytesget:
Integer expression (input)

Specifies the number of bytes to read from the subrecord. lf

nbytesget equals negative one, all the bytes in the subrecord

will be read. Note that there are two bytes of data per integer.

nbytesgot:
Integer variable (input/output)

Returns the number of bytes actually retrieved from the

subrecord.

G‑79
Database Format

Database Format

ibuf:
Integer array of nbytesget/ 2 elements (input/output)

This is the buffer that returns the subrecord data. You must

declare ibuf to have enough array elements for the largest

subrecord to be retrieved. The maximum size is 6.000

elements.

error:
Integer variable (input/output)

Returns the error condition:

0
No errors were found.

1
An IO error was found.

2
There are not enough bytes to read

(nbytesget is too big).

3
The subrecord was not found.

4
An invalid MIB number was given.

Example

Get_Sr_I(Mib, PL, 1, ‑1, NBytesGot, IBuf(1), Error)

G‑80
UPL Revision 6.0

Database Format

GetSrR

Type

Intrinsic Procedure
Database Access

Purpose

Allows direct reading of database subrecords that consist of only real data. No data type conversion or variable basing is necessary.

WARNING: This procedure is for advanced users only.

Syntax

GetSrR(mib, srtype, occur, nbytesget, nbytesgot, rbuf(1), error)

Parameters

mib:
Integer4 expression (input)

Specifies the MIB number of the entity that the subrecord is

read from.

srtype:
String expression of 2 characters (input)

Specifies the type of subrecord to retrieve. If the parameter is

an empty string, the procedure retrieves any type of subrecord.

occur:
Integer expression (input)

Specifies which occurrence of the srtype subrecord to get. lt is

used if the Part Data File (PDF) portion of the entity record has

more than one srtype subrecord to read. lf the PDF portion of

the entity record does not have more than one srtype subrecord

to read, set the occur Parameter to one.

nbytesget:
Integer expression (input)

Specifies the number of bytes to read from the subrecord. lf

nytesget equals a negative one, all the bytes in the subrecord

will be read. Note: there are four bytes of data per real number.

nbytesgot:
Integer variable (input/output)

This returns the number of bytes retrieved from the subrecord.

rbuf:
Real array of nbytesget/4 elements (input/output)

This is the buffer that returns the subrecord data. You must

declare rbuf to have enough array elements for the largest

subrecord to be retrieved. The maximum size is 3.000

elements.

G‑81
Database Format

Database Format

error:
Integer variable (input/output)

Returns the error condition:

0
No errors were found.

1
An IO error was found.

2
There are not enough bytes to read

(nbytesget is too big).

3
The subrecord was not found.

4
An invalid MIB number was given.

Example

Get_Sr_R(Mib, "EP", 1, ‑1, NBytesGot, AVT(1), Error)

G‑82
UPL Revision 6.0

Database Format

GetSrS

Type

Intrinsic Procedure
Database Access

Purpose

Allows direct reading of database subrecords that consist only of string data. No data type conversion or variable basing is necessary.

Data from the subrecord is stored starting in the string data field. You must update the current length field of the character string in your program.

WARNING: This procedure is for advanced users only.

Syntax

GetSrS(mib, srtype, occur nbytesget, nbytesgot, sbuf, error)
Parameters

mib:
Integer4 expression (input)

Specifies the MIB number of the entity that the subrecord is

read from.

srtype:
String expression of 2 characters (input)

Specifies the type of subrecord to retrieve. If the parameter is

an empty string, the procedure retrieves any type of subrecord.

occur:
Integer expression (input)

Specifies which occurrence of the srtype subrecord to get. lt is

used if the Part Data File (PDF) portion of the entity record has

more than one srtype subrecord to read. lf the PDF portion of

the entity record does not have more than one srtype subrecord

to read, set the occur parameter to one.

nbytesget:
Integer expression (input)

Specifies the number of bytes to read from the subrecord. lf

nbytesget equals a negative one, all the bytes in the subrecord

have been read.

nbytesgot:
Integer variable (input/output)

This returns the number of bytes actually retrieved from the

subrecord. You should update the length attribute of sbuf with

this value. See the example below.

G‑83
Database Format

Database Format

sbuf:
String variable of nbytesget characters (input/output)

This is the buffer that returns the subrecord data. You must

declare sbuf to have enough characters for the largest

subrecord to be retrieved. The maximum size is 12.000 bytes.

error:
Integer variable (input/output)

Retums the error condition:

0
No errors were found.

1
An IO error was found.

2
There are not enough bytes to read

(nbytesget is too big).

3
The subrecord was not found.

4
An invalid MIB number was given.

Example

Get_Sr_S(PropMib, 'D2', 2, ‑ 1, NBytesGot, PropStr, Error)

PropStr.length = NBytesGot

G‑84
UPL Revision 6.0

Database Format

ModSr

Type

Intrinsic Procedure
Database Access

Purpose

Modifies a database subrecord that consists of integer data only. Use this procedure when you want to change integer information about an entity in the PDF portion of the part database.

WARNING:
This procedure is for advanced users only. Improper use could

damage or destroy your part database

Syntax

ModSr(mib, srtype, nn, nbyte, buf(1), error)

Parameters

mib:
Integer4 expression (input) Specifies the MIB number of the

entity whose subrecord is to be modified.

srtype:
String expression of 2 characters (input)

Specifies the two‑character subrecord type.

nn:
Integer expression (input)

Get the nnth occurrence of subrecord of the type srtype.
nbyte:
Integer expression (input)

Specifies the number of bytes of valid data in buf.

buf:
String expression (input)

Specifies new data to replace old data received from the

subrecord.

error:
Integer variable (input/output) Returns the error condition:

0
no errors were found.

1
an IO error was found.

3
the subrecord was not found.

4
an invalid MIB number was given.

G‑85
Database Format

Database Format

ModSrC

Type

Intrinsic Procedure
Database Access

Purpose

Modifies a database subrecord that consists of coordinate data only. Use this procedure when you want to change coordinate information about an entity in the PDF portion of the part database.

ModSrC is similar to the ModSr procedure, except that no variable basing or data type conversion is necessary.

WARNING:
This procedure is for advanced users only. Improper use could damage or destroy your part database.

Syntax

ModSrC(mib, srtype, occur, nbytesmod, cbuf(1), error)

Parameters

mib:
Integer4 expression (input). Specifies the MIB number of the

entity whose subrecord is to be modified.

srtype:
String expression of 2 characters (input)

Specifies the two‑character subrecord type.

occur:
Integer expression (input). Specifies which occurrence of the

srtype subrecord to get. lt is used if the Part Data File (PDF)

portion of the entity record has more than one srtype subrecord

to read. lf the PDF portion of the entity record does not have

more than one srtype subrecord to read, set occur to one.

nbytesmod:
Integer expression (input) Specifies the number of bytes of

valid data in cbuf.
cbuf.
Coordinate array of nbytesmod /12 elements (input/output)

Specifies the buffer holding new subrecord data. The

maximum size is 1.000 elements.

error:
Integer variable (input/output) Returns the error condition:

0
no errors were found.

1
an IO error was found.

3
 the subrecord was not found.

4
 an invalid MIB number was given.

G‑86
UPL Revision 6.0

Database Format

ModSrI

Type

Intrinsic Procedure
Database Access

Purpose

Modifies a database subrecord that consists of integer data only. Use this procedure when you want to change integer information about an entity in the PDF portion of the part database.

ModSrl is similar to the ModSr procedure except that no variable basing or data type conversion is necessary.

WARNING:
This procedure is for advanced users only. Improper use could damage or destroy your part database

Syntax

ModSrl(mib, srtype, occur, nbytesmod, ibuf(1), error)

Parameters

mib:
Integer4 expression (input) Specifies the MIB number of the

entity whose subrecord is to be modified.

srtype:
String expression of 2 characters (input)

Specifies the two‑character subrecord type.

occur:
Integer expression (input) Specifies which occurrence of the

srtype subrecord to get. lt is used if the Part Data File (PDF)

portion of the entity record has more than one srtype subrecord to read. lf the PDF portion of the entity record does not have more than one srtype subrecord to read, set occur to one.

nbytesmod:
Integer expression (input)

Specifies the number of bytes of valid data in ibuf.
ibuf:
Integer array of nbytesmod / 2 elements (input/output)

Speeifies the buffer holding new subrecord data. The

maximum size is 6.000 elements.

error:
Integer variable (input/output) Returns the error condition:

0
no errors were found.

1
an IO error was found.

3
the subrecord was not found.

4
an invalid MIB number was given.

G‑87
Database Format

Database Format

ModSrR

Type

Intrinsic Procedure
Database Access

Purpose

Modifies a database subrecord that consists of real data only. Use this procedure when you want to change real nurnber information about an entity in the PDF portion of the part database.

ModSrR is similar to the ModSr procedure except that no variable basing or data type conversion is necessary.

WARNING:
This procedure is for advanced users only. Improper use could damage or destroy your part database.

Syntax

ModSrR(mib, srtype, occur, nbytesmod, rbuf(1), error)

Parameters

mib:
Integer4 expression (input) Specifies the MIB number of the

entity whose subrecord is to be modified.

srtype:
String expression of 2 characters (input)

Specifies the two‑charaeter subrecord type.

occur:
Integer expression (input) Specifies which occurrence of the

srtype subrecord to get. lt is used if the Part Data File (PDF)

portion of the entity record has more than one srtype subrecord

to read. lf the PDF portion of the entity record does not have

more than one srtype subrecord to read, set occur to one.

nbytesmod:
Integer expression (input)

Specifies the number of bytes of valid data in rbuf. The

maximum size is 3.000 elements.

rbuf:
Coordinate array of nbytesmod/4 elements (input/output)

Specifies the buffer holding new subrecord data.

error:
Integer variable (input/output) Retums the error condition:

0
no errors were found.

1
an IO error was found.

3
the subrecord was not found.

4
an invalid MIB number was given.

G‑88
UPL Revision 6.0

Database Format

ModSrS

Type

Intrinsic Procedure
Database Access

Purpose

Modifies a database subrecord that consists of character string data only. Only the actual string data is written to the subrecord, the string variable attributes LEN and .LENGTH are not written to the subrecord. lf the attributes are needed, you must explicitly write them to the database by basing another string variable to the sbuf parameter.

Use this procedure when you want to change character string information about an entity in the PDF portion of the part database.

ModSrS is similar to the ModSr procedure except that no variable basing or data type conversion is necessary.

WARNING:
This procedure is for advanced users only. Improper use could damage or destroy your part database

Syntax

ModSrS(mib, srtype, occur, nbytesmod, sbuf, error)

Parameters

mib:
Integer4 expression (input) Specifies the MIB number of the

entity whose subrecord is to be modified.

srtype:
String expression of 2 characters (input)

Specifies the two‑character subrecord type.

occur:
Integer expression (input) Specifies which occurrence of the

srtype subrecord to get. lt is used if the Part Data File (PDF)

portion of the entity record has more than one srtype subrecord to read. If the PDF portion of the entity record does not have more than one srtype subrecord to read, set occur to one.

nbytesmod:
Integer expression (input) Specifies the number of bytes of

valid data in sbuf. Note that it is this parameter, and not the

sbuf.LENGTH attribute, that defines how many bytes are

modified.

G‑89
Database Format

Database Format

sbuf:
String variable of nbytesmod characters (input/output)

Specifies the buffer holding new subrecord data. The

maximum length is 12.000 bytes.

error:
Integer variable (input/output) . Returns the error condition:

0
no errors were found.

1
an IO error was found.

3
the subrecord was not found.

4
an invalid MIB number was given.

G‑90
UPL Revision 6.0

Database Format

MSubrecAC

Type

Intrinsic Procedure
Database Access

Purpose

Modifies the contents of an AC type subrecord. The AC subrecord holds data about an arc entity. Use this procedure when you want to change the information about an arc entity in the PDF portion of the part database.

WARNING:
This procedure is for advanced users only. Incorrect use could damage or destroy your part database.

Syntax

MSubrecAC(mib, occur, error, transform(1), radius, abeg, aend)

Parameters

mib:
Integer4 expression (input)

Specifies the MIB number of the entity that contains the AC

subrecord.

occur:
Integer expression (input)

Specifies which occurrence of the AC subrecord to modify. lf

there is one or more AC subrecord for a given entity, use this

parameter to specify the particular subrecord. The occurrences

start at one and increase with each additional occurrence. lf a

specified occurrence of the subrecord does not exist, an error

code of three is returned in the error parameter.

Programming Tip: To call this procedure, give the MIB

number for the entity and the first occurrence of the subrecord

you want to access. Subsequent calls with the same MIB

number, and a negative one for the occur parameter, will

automatically access the next AC subrecord. An error three

returns if there are no more AC subrecords. Using this

programming tip is faster than incrementing the occur

parameter for each occurrence of the subrecord.

G‑91
Database Format

Database Format

error.:
Integer variable (input/output)

This parameter returns the error condition:

0
no errors were found.

1
an IO error was found.

3
the subrecord was not found.

4
an invalid MIB number was given.

transform:
Real array of 12 elements (input/output)

Specifies the arc's view transform. This transformation matrix

defines the plane which the arc lines in. Usually, this is the

view the arc was created in. Elements 10, 11, and 12 represent the origin of the arc.

radius:
Real expression (input)

Specifies the radius of the arc in database units.

abeg:
Real expression (input)

Specifies the beginning angle of the arc given in radians.

Angle zero starts at the X‑axis and increases counterclockwise. The X‑axis is defined by the arc's view transform.

aend:
Real expression (input)

Specifies the ending angle of the arc given in radians. Angle

zero starts at the X‑axis and increases counterelockwise. The

X‑axis is defined by the arc's view transform.

G‑92
UPL Revision 6.0

Database Format

MSubrecAP

Type

Intrinsic Procedure
Database Access

Purpose

Modifies the contents of an AP type subrecord. The AP subrecord holds data about partial arcs used in angular dimensions. Use this procedure when you want to change information about an angular dimension entity in the PDF portion of the part database.

WARNING:
This procedure is for advanced users only. Incorrect use could damage or destroy your part database.

Syntax

MSubrecAP(mib, occur, error, org, radius1, abeg1,

aend1, radius2, abeg2, aend2)

Parameters

mib:
Integer4 expression (input)

Specifies the MIB number of the entity that contains the AP

subrecord.

occur:
Integer expression (input)

Specifies which occurrence of the AP subrecord to modify. lf

there is one or more AP subrecord for a given entity, use this

parameter to specify the particular subrecord. The occurrences

start at one and increase with each additional occurrence. lf a

specified occurrence of the subrecord does not exist, an error

code of three is returned in the error parameter.

Programming Tip: To call this procedure, give the MIB

number for the entity and the first occurrence of the subrecord

you want to access. Subsequent calls with the same MIB

number, and a negative one for the occur parameter, will

automatically access the next AP subrecord. An error three

returns if there are no more AP subrecords. Using this

programming tip is faster than incrementing the occur

parameter for each occurrence of the subrecord.

G‑93
Database Format

Database Format

error:
Integer variable (input/output)

This parameter returns the error condition:

0
no errors were found.

1
an IO error was found.

3
the subrecord was not found.

4
an invalid MIB number was given.

org:
Coordinate expression (input)

Specifies the origin of the arc(s) in model coordinates.

radius1:
Real expression (input)

Speeifies the radius of the first arc in database units.

abeg1:
Real expression (input)

Specifies the beginning angle of the first arc in radians. Angle

zero begins at the X‑axis (defined by the arc's view transform)

and increases counterclockwise.

aend1:
Real expression (input)

Specifies the ending angle of the first arc in radians. Angle

zero starts at the X‑axis and increases counterclockwise. The

X‑axis is defined by the arc's view transform.

radius2:
Real expression (input)

Specifies the radius of the second arc in database units.

abeg2:
Real expression (input)

Specifies the beginning angle of the second arc in radians.

Angle zero begins at the X‑axis and increases

counterclockwise. The X‑axis is defined by the arc's view

transform.

aend2:
Real expression (input)

Specifies the ending angle of the second arc in radians. Angle

zero starts at the X‑axis and increases counterclockwise. The

X‑ axis is defined by the arc's view transform.

G‑94
UPL Revision 6.0

Database Format

MSubrecDS

Type

Intrinsic Procedure
Database Access

Purpose

Modifies the contents of a DS type subrecord. The DS subrecord holds data about the display image that was saved in the Personal Designer command SAVE IMAGE. Use this procedure when you want to change information about an image entity in the PDF portion of the part database.

WARNING:
This procedure is for advanced users only. Incorrect use could damage or destroy your part database.

Syntax

MSubrecDS(mib, occur, error, extents(1), scrscl, viewno, dispno)

Parameters

mib:
Integer4 expression (input)

Specifies the MIB number of the entity containing the DS

subrecord.

occur:
Integer expression (input)

Specifies which occurrence of the DS subrecord to modify. lf

there is one or more DS subrecord for a given entity, use this

parameter to specify the particular subrecord. The occurrences

start at one and increase with each additional occurrence. lf a

specified occurrence of the subrecord does not exist, an error

code of three is returned in the error parameter.

Programming Tip: To call this procedure, give the MIB

number for the entity and the first occurrence of the subrecord

you want to access. Subsequent calls with the same MIB

number, and a negative one for the occur parameter, will

automatically access the next DS subrecord. An error three

will be returned if there are no more DS subrecords. Using

this programming tip is faster than incrementing the occur

parameter for each occurrence of the subrecord.

G‑95
Database Format

Database Format

error:
Integer variable (input/output)

This parameter returns the error condition:

0
no errors were found.

1
an IO error was found.

2
the subrecord was not found.

4
an invalid MIB number was given.

extents:
Real array of 4 elements (input/output)

Specifies the maximum and minimum values used in a display

image. They are given as X minimum and maximum

followed by Y minimum and maximum.

scrscl:
Real expression (input)

Specifies the display image's screen scale.

viewno:
Integer expression (input)

Specifies the view number associated with the display image.

dispno:
Integer expression (input)

Specifies the display image number.

G‑96
UPL Revision 6.0

Database Format

MSubrecEX

Type

Intrinsic Procedure
Database Access

Purpose

Modifies the contents of an EX type subrecord. The EX subrecord holds data about the extents of a part or figure in 3D space. Use this procedure when you want to change information about extents, figure instance, or figure image entities, in the PDF portion of the part database.

WARNING:
This procedure is for advanced users only. Incorrect use could damage or destroy your part database.

Syntax

MSubrecEX(mib, occur, error, extents(1))

Parameters

mib:
Integer4 expression (input)

Specifies the MIB number of the entity that contains the EX

subrecord.

occur:
Integer expression (input)

Specifies which occurrence of the EX subrecord to modify. lf

there is one or more EX subrecord for a given entity, use this

parameter to specify the particular subrecord. The occurrences

start at one and increase with each additional occurrence. If a

specified occurrence of the subrecord does not exist, an error

code of three is returned in the error parameter.

Programming Tip: To call this procedure, give the MIB

number for the entity and the first occurrence of the subrecord

you want to access. Subsequent calls with the same MIB

number, and a negative one for the occur parameter, will

automatically access the next EX subrecord. An error three

will be retumed if there are no more EX subrecords. Using

this programming tip is faster than incrementing the occur

parameter for each occurrence of the subrecord.

G‑97
Database Format

Database Format

error:
Integer variable (input/output) Returns the error condition:

0
no errors were found.

1
an IO error was found.

3
The subrecord was not found.

4
an invalid MIB number was given.

extents:
Real array of 24 elements (input/output)

Specifies the range of X, Y, and Z values used in a drawing or

figure. These values are always model space coordinates.

This parameter can be used in two ways.

1.
The first holds the eight X, Y, and Z values that

define the corners of an imaginary cube which surrounds all part or figure geometry.

2.
The second method, used by surfacing in Personal

Designer, holds the six minimum and maximum values

used by any entity in the database. These are specified in the following order: minimum X, maximum X, minimum Y, maximum Y, minimum Z, maximum Z. The same

imaginary cube can be created by generating planes

normal to X, Y, and Z axes and passing through the six

points.

G‑98
UPL Revision 6.0

Database Format

MSubrecIL

Type

Intrinsic Procedure
Database Access

Purpose

Modifies the contents of an IL type subrecord. The IL subrecord holds data about a figure image that is to be inserted in the current part. Use this procedure when you want to change information about a figure image entity in the PDF portion of the part database.

WARNING:
This procedure is for advanced users only. Incorrect use could damage or destroy your part database.

Syntax

MSubreclL(mib, occur, error, figname, figmib, entcount, figdate, figtime)

Parameters

mib:
Integer4 expression (input)

Specifies the MIB number of the entity that contains the

IL subrecord.

occur:
Integer expression (input)

Specifies which occurrence of the IL subrecord to modify. lf

there is one or more IL subrecord for a given entity, use this

parameter to specify the particular subrecord. The occurrences

start at one and increase with each additional occurrence. If a

specified occurrence of the subrecord does not exist, an error

code of three is returned in the error parameter.

Programming Tip: To call this procedure, give the MIB

number for the entity and the first occurrence of the subrecord

you want to access. Subsequent calls with the same MIB

number, and a negative one for the occur parameter, will

automatically access the next IL subrecord. An error three will

be returned if there are no more IL subrecords. Using this

programming tip is faster than incrementing the occur

parameter for each occurrence of the subrecord.

G‑99
Database Format

Database Format

error:
Integer variable (input/output)

This parameter returns the error condition:

0
no errors were found.

1
an IO error was found.

3
the subrecord was not found.

4
an invalid MIB number was given.

figname:
String expression of 64 characters (input)

Specifies the figure file name including the path name.

figmib:
Integer4 expression (input)

Specifies the MIB number of the first entity in the figure image

list.

entcount:
Integer expression (input)

Specifies the number of entities in the figure image list starting

with the mib parameter.

figdate:
Integer expression (input)

Specifies the file date of the figure part file. This is the date

the file was last modified. See Appendix E, Internal Data

Storage Format, for more information about the date format.

figtime:
Integer expression (input)

Specifies the file time of the figure part file. This is the time

the file was last modified. See Appendix E, Internal Data

Storage Format, for more information about the time format.

G‑100
UPL Revision 6.0

Database Format

MSubrecL1

Intrinsic Procedure
Database Access

Purpose

Modifies the contents of an L 1 type subrecord. The L1 subrecord holds data about dimension extension line one. Use this procedure when you want to change extension line information about a dimension entity in the PDF portion of the part database.

WARNING; This procedure is for advanced users only. Incorrect use could damage or destroy your part database.

Syntax

MsubrecL1(mib, occur, error pnt1, pnt2)

Parameters

mib:
Integer4 expression (input)

Specifies the MIB number of the entity that contains the L1

subrecord.

occur:
Integer expression (input)

Specifies which occurrence of the L1 subrecord to modify. lf

there is one or more L1 subrecord for a given entity, use this

parameter to specify the particular subrecord. The occurrences

start at one and increase with each additional occurrence. lf a

specified occurrence of the subrecord does not exist, an error

code of three is returned in the error parameter.

Programming Tip: To call this procedure, give the MIB

number for the entity and the first occurrence of the subrecord

you want to access. Subsequent calls with the same MIB

number, and a negative one for the occur parameter, will

automatically access the next L1 subrecord. An error three

will be returned if there are no more L1 subrecords. Using this

programming tip is faster than inerementing the occur

parameter for each occurrence of the subrecord.

G‑101
Database Format

Database Format

error:
Integer variable (input/output)

This parameter returns the error condition:

0
no errors were found.

1
an IO error was found.

3
the subrecord was not found.

4
an invalid MIB number was given.

pnt1:
Coordinate expression (input)

Specifies the first endpoint of the extension line.

pnt2:
Coordinate expression (input)

Specifies the second endpoint of the extension line.

G‑102
UPL Revision 6.0

Database Format

MSubrecL2

Type

Intrinsic Procedure
Database Access

Purpose

Modifies the contents of an L2 type subrecord. The L2 subrecord holds data about dimension extension line two. Use this procedure when you want to change extension line information about a dimension entity in the PDF portion of the part database.

WARNING:
This procedure is for advanced users only. Incorrect use could damage or destroy your part database.

Syntax

MSubrecL2(mib, occur, error pnt1, pnt2)

Parameters

mib:
Integer4 expression (input) Specifies the MIB number of the

entity that contains the L2 subrecord.

occur:
Integer expression (input) Specifies which occurrence of the L2

subrecord to modify. lf there is one or more L2 subrecord for a

given entity, use occur to specify the particular subrecord. The

occurrences start at one and increase with each additional

occurrence. lf a specified occurrence of the subrecord does not

exist, an error code of three is returned in the error parameter.

Programming Tip: To call this procedure, give the MIB number

for the entity and the first occurrence of the subrecord you want

to access. Subsequent calls with the same MIB number, and a

negative one for the occur parameter, will automatically access

the next L2 subrecord. An error three will be returned if there

are no more L2 subrecords. Using this programming tip is

faster than incrementing the occur parameter for each

occurrence of the subrecord.

error:
Integer variable (input/output) Returns the error condition:

0
no errors were found.

1
an IO error was found.

3
the subrecord was not found.

4
an invalid MIB number was given.

G‑103
Database Format

Database Format

pnt1:
Coordinate expression (input)

Specifies the first endpoint of the extension line.

pnt2:
Coordinate expression (input)

Specifies the second endpoint of the extension line.

G‑104
UPL Revision 6.0

Database Format

MSubrecPA

Type

Intrinsic Procedure
Database Access

Purpose

Modifies the contents of a PA type subrecord. The PA subrecord holds data about entity properties. Use this procedure when you want to change property information about any entity in the PDF portion of the part database.

WARNING:
This procedure is for advanced users only. Incorrect use could damage or destroy your part database.

Syntax

MSubrecPA(mib, occur, error, pname, ptype, pval)

Parameters

mib:
Integer4 expression (input)

Specifies the MIB number of the entity that contains the PA

subrecord.

occur:
Integer expression (input)

Specifies which occurrence of the PA subrecord to modify. lf

there is one or more PA subrecord for a given entity, use this

parameter to specify the particular subrecord. The occurrences start at one and increase with each additional occurrence. lf a specified occurrence of the subrecord does not exist, an error code of three is returned in the error parameter.

Programming Tip: To call this procedure, give the MIB

number for the entity and the first occurrence of the subrecord

you want to access. Subsequent calls with the same MIB

number, and a negative one for the occur parameter, will

automatically access the next PA subrecord. An error three

will be returned if there are no more PA subrecords. Using this programming tip is faster than incrementing the occur

parameter for each occurrence of the subrecord.

G‑105
Database Format

Database Format

error:
Integer variable (input/output)

This parameter returns the error condition:

0
no errors were found.

1
an IO error was found.

3
the subrecord was not found.

4
an invalid MIB number was given.

pname:
String expression of 8 characters (input)

Specifies the property name.

ptype:
String expression of 7 characters (input)

Specifies the property type.

pval:
String expression of 100 characters (input)

Specifies the property value.

G‑106
UPL Revision 6.0

Database Format

MSubrecPX

Type

Intrinsic Procedure
Database Access

Purpose

Modifies the contents of a PX type subrecord. The PX subrecord holds data about the point entity. Use this procedure when you want to change information about a point entity in the PDF portion of the part database.

WARNING:
This procedure is for advanced users only. Incorrect use could damage or destroy your part database.

Syntax

MSubrecPX(mib, occur, error, pnt)
Parameters

mib:
Integer4 expression (input)

Specifies the MIB number of the entity that contains the

PX subrecord.

occur:
Integer expression (input)

Speeifies which occurrence of the PX subrecord to modify. lf

there is one or more PX subrecord for a given entity, use this

parameter to specify the particular subrecord. The occurrences

start at one and increase with each additional occurrence. lf a

specified occurrence of the subrecord does not exist, an error

code of three is returned in the error parameter.

Programming Tip: To call this procedure, give the MIB

number for the entity and the first occurrence of the subrecord

you want to access. Subsequent calls with the same MIB

number, and a negative one for the occur parameter, will

automatically access the next PX subrecord. An error three

will be returned if there are no more PX subrecords. Using

this programming tip is faster than incrementing the occur

parameter for each occurrence of the subrecord.

G‑107
Database Format

Database Format

error:
Integer variable (input/output)

This parameter returns the error condition:

0
no errors were found.

1
an IO error was found.

3
the subrecord was not found.

4
an invalid MIB number was given.

pnt:
Coordinate expression(input)

Specifies the X, Y, Z values of a point in model coordinates.

G‑108
UPL Revision 6.0

Database Format

MSubrecTD

Type

Intrinsic Procedure
Database Access

Purpose

Modifies the contents of a TD type subrecord. The TD subrecord holds data about text format and orientation. Note that it does not hold the actual text itself, which is usually in a TX subrecord. Use this procedure when you want to change information about text strings, dimensions, labels, and MView entities in the PDF portion of the part database.

WARNING:
This procedure is for advanced users only. Incorrect use could damage or destroy your part database.

Syntax

MSubreeTD(mib, occur, error, transform(1), height, width, linesp, just(1))

Parameters

mib:
Integer4 expression (input)

Specifies the MIB number of the entity that contains the TD

subrecord.

occur:
Integer expression (input)

Specifies which occurrence of the TD subrecord to modify. lf

there is one or more TD subrecord for a given entity, use this

parameter to specify the particular subrecord. The occurrences

start at one and increase with each additional occurrence. lf a

specified occurrence of the subrecord does not exist, an error

code of three is returned in the error parameter.

Programming Tip: To call this procedure, give the MIB

number for the entity and the first occurrence of the subrecord

you want to access. Subsequent calls with the same MIB

number, and a negative one for the occur parameter, will

automatically access the next TD subrecord. An error three

will be returned if there are no more TD subrecords. Using

this programming tip is faster than incrementing the occur

parameter for each occurrence of the subrecord.

G‑109
Database Format

Database Format

error:
Integer variable (input/output)

This parameter returns the error condition:

0
no errors were found.

1
an IO error was found.

3
the subrecord was not found.

4
an invalid MIB number was given.

transform:
Real array of 12 elements (input/output)

Specifies the text's view transform. This transforrnation

matrix defines the plane that the text lies in. Usually, this is the

view the text was created in. Elements 10, 11, and 12 are the

origin of the arc. For TD subrecords, only elements 1 through

6 and 10 through 12 of the view transform are used. Elements

1 through 6 are the X‑axis and Y‑axis cosines. Elements 10

through 12 are the origin of the text.

height:
Real expression (input)

Specifies the text height in database units.

width:
Real expression (input)

Specifies the text width in database units.

linesp:
Real expression (input)

Specifies the line spacing, in database units.

just:
Integer array of 6 elements (input/output)

This array specifies text justification.

Valid values for just(1) are:

1
left justification.

2
right justification.

3
center justification.

just(2) is an associativity flag for dimension text. Values are:

1
has D4 subrecord.

0
has no associativity

just(3) is MView number

just(4) is text font number

just(5) is text slant angle

just(6) is reserved; do not use.

G‑110
UPL Revision 6.0

Database Format

MSubrecTF

Type

Intrinsic Procedure
Database Access

Purpose

Modifies the contents of a TF type subrecord. The TF subrecord holds transformation data about a figure instance which is inserted into a part. Use this procedure when you want to change information about a figure instance entity in the PDF portion of the part database.

WARNING:
This procedure is for advanced users only. Incorrect use could damage or destroy your part database.

Syntax

MSubrecTF(mib, occur, error, transform(1), figuremib)

Parameters

mib:
Integer4 expression (input) Specifies the MIB number of the

entity that contains the TF subrecord.

occur:
Integer expression (input) Specifies which occurrence of the

TF subrecord to modify. lf there is one or more TF subrecord

for a given entity, use occur to specify the particular subrecord.

The occurrences start at one and increase with each additional

occurrence. lf a specified occurrence of the subrecord does not

exist, an error code of three is returned in the error parameter.

Programming Tip: To call this procedure, give the MIB

number for the entity and the first occurrence of the subrecord

you want to access. Subsequent calls with the same MIB

number, and a negative one for the occur parameter, will

automatically access the next TF subrecord. An error three

will be returned if there are no more TF subrecords. Using this

programming tip is faster than incrementing the occur

parameter for each occurrence of the subrecord.

error:
Integer variable (input/output) Returns the error condition:

0
no errors were found.

1
an IO error was found.

3
the subrecord was not found.

4
an invalid MIB number was given.

G‑111
Database Format

Database Format

transform:
Real array of 15 elements (input/output)

The first nine elements of the transformation matrix specify the

figure viewing matrix. Elements 10, 11, and 12 are the figure

origin. Elements 13, 14, and 15 are the figure's X, Y, and Z

scale factors.

figuremib:
Integer4 expression (input)

Specifies the MIB number of the figure image list entity.

G‑112
UPL Revision 6.0

Database Format

MSubrecTX

Type

Intrinsic Procedure
Database Access

Purpose

Modifies the contents of a TX type subrecord. The TX subrecord holds the actual text of a text string. Use this procedure when you want to change information about text, dimension, label, MView, curve, and surface entities in the PDF portion of the part database.

WARNING:
This procedure is for advanced users only. Incorrect use could damage or destroy your part database.

Syntax

MSubrecTX(mib, occur, error, textstring)

Parameters

mib:
Integer4 expression (input) Specifies the MIB number of the entity that contains the TX subrecord.

occur:
Integer expression (input)

Specifies which occurrence of the TX subrecord to modify. Use this when there is one or more TX subrecord for a given entity. The occurrences start at one and increase with each additional occurrence. lf a specified occurrence of the subrecord does not exist, an error code of three is returned in the error parameter.

Programming Tip: To call this procedure, give the MIB number for the entity and the first occurrence of the subrecord you want to access. Subsequent calls with the same MIB number, and a negative one for the occur parameter, automatically access the next TX subrecord. An error three is returned if there are no more TX subrecords.This programming tip is faster than incrementing, the occur parameter for each occurrence of the subrecord.

G‑113
Database Format

Database Format

error:
Integer variable (input/output) Returns the error condition:

0
no errors were found.

1
an IO error was found.

3
the subrecord was not found.

4
an invalid MIB number was given.

textstring:
String expression (input) Specifies the text string to be

modified.

G‑114
UPL Revision 6.0

Database Format

MSubrecVN

Type

Intrinsic Procedure
Database Access

Purpose

Modifies the contents of a VN type subrecord. The VN subrecord holds data about a defined view. Note that there is no entity record and therefore no VN subrecord for Personal Designer's six predefined views. Use this procedure when you want to change information about a view entity in the PDF portion of the part database.

WARNING:
This procedure is for advanced users only. Incorrect use could damage or destroy your part database.

Syntax

MSubrecVN(mib, occur, error, transform(1))

Parameters

mib:
Integer4 expression (input)

Specifies the MIB number of the entity that contains the

VN subrecord.

occur:
Integer expression (input)

Specifies which occurrence of the VN subrecord to modify. If

there is one or more VN subrecord for a given entity, use this

parameter to specify the particular subrecord. The occurrenees

start at one and increase with each additional occurrence. lf a

specified occurrence of the subrecord does not exist, an error

code of three is returned in the error parameter.

Programming Tip: To call this procedure, give the MIB

number for the entity and the first occurrence of the subrecord

you want to access. Subsequent calls with the same MIB

number, and a negative one for the occur parameter, will

automatically access the next TX subrecord. An error three

will be returned if there are no more TX subrecords. Using

this programming tip is faster than incrementing the occur

parameter for each occurrence of the subrecord.

G‑115
Database Format

Database Format

error:
Integer variable (input/output)

This parameter returns the error condition:

0
no errors were found.

1
an IO error was found.

3
the subrecord was not found.

4
an invalid MIB number was given.

transform:
Real array of 15 elements (input/output)

Specifies the view transformation matrix. Only the first nine

elements of transform are used. The offset and scaling factors

are not modified.

G‑116
UPL Revision 6.0

Database Format

MSubrecXH

Type

Intrinsic Procedure
Database Access

Purpose

Modifies the contents of an XH type subrecord. The XH subrecord holds data about cross‑hatch lines. Use this procedure when you want to change information about cross‑hatch line entities in the PDF portion of the part database.

WARNING:
This procedure is for advanced users only. Incorrect use could damage or destroy your part database.

Syntax

MSubrecXH(mib, occur error, endpoints, npnts)

Parameters

mib:
Integer4 expression (input)

Specifies the MIB number of the entity that contains the

XH subrecord.

occur:
Integer expression (input)

Specifies which occurrence of the XH subrecord to modify. lf

there is one or more XH subrecord for a given entity, use this

parameter to specify the particular subrecord. The occurrences

start at one and increase with each additional occurrence. lf a

specified occurrence of the subrecord does not exist, an error

code of three is returned in the error parameter.

Programming Tip: To call this procedure, give the MIB

number for the entity and the first occurrence of the subrecord

you want to access. Subsequent calls with the same MIB

number, and a negative one for the occur parameter, will

automatically access the next XH subrecord. An error three

will be returned if there are no more XH subrecords. Using

this programming tip is faster than incrementing the occur

parameter for each occurrence of the subrecord.

G‑117
Database Format

Database Format

error:
Integer variable (input/output)

This parameter returns the error condition:

0
no errors were found.

1
an IO error was found.

3
the subrecord was not found.

4
an invalid MIB number was given.

endpoints:
Coordinate array of npnts elements (input/output)

Specifies the endpoints of the cross‑hatch lines. This

parameter contains pairs of endpoints rather than the

cross‑hatch boundaries.

npnts:
Integer expression (input)

Specifies the number of endpoints in the endpoints parameter.

The maximum number of lines allowed is 500; and therefore

1.000 endpoints for each cross‑hatch area. This should be an

even number since the points are pairs.

G‑118
UPL Revision 6.0

Database Format

MSubrecXN

Type

Intrinsic Procedure
Database Access

Purpose

Modifies the contents of an XN type subrecord. The XN subrecord holds the vertices of a string. A string consists of two or more line segments. Use this procedure when you want to change information about a string, label, arrow, dimension, cross‑hateh, MView, curve, or surface entity in the PDF portion of the part database.

WARNING:
This procedure is for advanced users only. Incorrect use could damage or destroy your part database.

Syntax

MSubrecXN(mib, occur, error ,vertices(1), nvert)

Parameters

mib:
Integer4 expression (input)

Specifies the MIB number of the entity that contains the

XN subrecord.

occur:
Integer expression (input)

Specifies which occurrence of the XN subrecord to modify. lf

there is one or more XN subrecord for a given entity, use this

parameter to specify the particular subrecord. The occurrences

start at one and increase with each additional occurrence. lf a

specified occurrence of the subrecord does not exist, an error

code of three is returned in the error parameter.

Programming Tip: To call this procedure, give the MIB

number for the entity and the first occurrence of the subrecord

you want to access. Subsequent calls with the same MIB

number, and a negative one for the occur parameter, will

automatically access the next XN subrecord. An error three

will be returned if there are no more XN subrecords. Using

this programming tip is faster than incrementing the occur

parameter for each occurrence of the subrecord.

G‑119
Database Format

Database Format

error:
Integer variable (input/output)

This parameter returns the error condition:

0
no errors were found.

1
an IO error was found.

3
the subrecord was not found.

4
an invalid MIB number was given.

vertices:
Coordinate array of nvert elements (input/output)

Specifies string vertices in model coordinates. The order of

the vertices in this array is the order in which the string was

created.

nvert:
Integer expression (input)

This is the number of vertices in the vertices parameter.

G‑120
UPL Revision 6.0

Database Format

MSubrecXZ

Type

Intrinsic Procedure
Database Access

Purpose

Modifies the contents of an XZ type subrecord. 'Me XZ subrecord holds the endpoints of a line. Use this procedure when you want to change information about a line entity in the PDF portion of the part database.

WARNING:
This procedure is for advanced users only. Incorrect use could damage or destroy your part database.

Syntax

MSubrecXZ(mib, occur, error, pnt1, pnt2)

Parameters

mib:
Integer4 expression (input)

Specifies the MIB number of the entity that contains the

XZ subrecord.

occur:
Integer expression (input) Specifies which occurrence of the

XZ subrecord to modify. If there is one or more XZ subrecord

for a given entity, use occur to specify the particular subrecord.

The occurrences start at one and increase with each additional

occurrence. lf a specified occurrence of the subrecord does not

exist, an error code of three is returned in the error parameter.

Programming Tip: To call this procedure, give the MIB

number for the entity and the first occurrence of the subrecord

you want to access. Subsequent calls with the same MIB

number, and a negative one for the occur parameter, will

automatically access the next XN subrecord. An error three

will be returned if there are no more XN subrecords. Using

this programming tip is faster than incrementing the occur

parameter for each occurrence of the subrecord.

error:
Integer variable (input/output) Returns the error condition:

0
no errors were found.

1
an IO error was found.

3
the subrecord was not found.

4
an invalid MIB number was given.

G‑121
Database Format

Database Format

pnt1:
Coordinate expression (input)

Specifies the first endpoint of the line in model coordinates.

pnt2:
Coordinate expression (input)

Specifies the second endpoint of the line in model coordinates.

G‑122
UPL Revision 6.0

Database Format

PutSr

Type

Intrinsic Procedure
Database Access

Purpose

This procedure puts, or adds, a database subrecord that consists of only integer data to the PDF portion of the database.

WARNING:
This procedure is for advanced users only. Improper use could damage or destroy your part database.

Syntax

PutSr(mib, snype, nbytes, buf(1), error)

Parameters

mib:
Integer4 expression (input)

Specifies the MIB number of the entity to put the new

subrecord on.

srtype:
String expression of 2 charaeters (input)

Specifies the two‑character subrecord type.

nbyte:
Integer expression (input)

Specifies the number of bytes of valid data in buf for the new

subrecord.

buf:
String expression (input)

This buffer specifies the new subrecord data.

error:
Integer variable (input/output) Returns the error condition:

0
no errors were found.

1
an IO error was found.

4
an invalid MIB number was given.

G‑123
Database Format

Database Format

PutsrC

Type

Intrinsic Procedure
Database Access

Purpose

Puts, or adds, a database subrecord that consists of only coordinate data to the PDF portion of the database. This procedure is similar to the PutSr procedure, except that no variable basing or data type conversion is necessary.

There are two ways to use the PutSrC procedure:

1.
The first is for adding a subrecord to an existing entity.

2.
The second is for adding a whole entity to the database. In this latter case, you must first make a call to the AddEnt intrinsic procedure to set up the MIB portion of the database. Then you make calls to "put" or write database subrecords to the end of the PDF portion of the database.

WARNING:
This procedure is for advanced users onty. Improper use could damage or destroy your part database.

Syntax

PutSrC(mib, srtype, nbytes, cbuf(1), error)

Parameters

mib:
Integer4 expression (input) Specifies the MIB number of the

entity to put the new subrecord on.

srtype:
String expression of 2 characters (input) Specifies the

two‑character subrecord type.

nbytes:
Integer expression (input) Specifies the number of bytes of

valid data in cbuf for the new subrecord.

G‑124
UPL Revision 6.0

Database Format

PutsrI

Type

Intrinsic Procedure
Database Access

Purpose

This procedure puts, or adds, a database subrecord that consists of only integer data to the PDF portion of the database. This procedure is similar to the PutSr procedure except that no variable basing or data type conversion is necessary.

There are two ways to use the PutSrl procedure:

1.
The first way is for adding a subrecord to an existing entity.

2.
 The second is for adding a whole entity to the database. In this case, you must first make a call to the AddEnt intrinsic procedure to set up the MIB portion of the database. Then you make calls to "put" or write database subrecords to the end of the PDF portion of the database.

WARNING:
This procedure is for advanced users only. Improper use could damage or destroy your part database.

Syntax

PutSrl(mib, srtype, nbytes, ibuf(1), error)

Parameters

mib:
Integer4 expression (input)

Specifies the MIB number of the entity to put the new

subrecord on.

srtype:
String expression of 2 characters (input)

Specifies the two‑character subrecord type.

nbytes:
Integer expression (input)

Specifies the number of bytes of valid data in ibuf for the new

subrecord.

ibuf:
Integer array of nbytes/ 2 elements (input/output) This buffer specifies the new subrecord data. The maximum buffer size is 6.000 elements.

G‑125
Database Format

Database Format

error:
Integer variable (input/output) Returns the error condition:

0
no errors were found.

1
an IO error was found.

4
an invalid MIB number was given.

G‑126
UPL Revision 6.0

Database Format

PutSrR

Type

Intrinsic Procedure
Database Access

Purpose

Puts, or adds, a database subrecord that consists of only real data to the PDF portion of the database. This procedure is similar to the PutSr procedure except that no variable basing or data type conversion is necessary.

There are two ways to use the PutSrR procedure:

1.
The first way is for adding a subrecord to an existing entity.

2.
The second is for adding a whole entity to the database. In this case, you must first make a call to the AddEnt intrinsic procedure to set up the MIB portion of the database. Then you make calls to "put" or write database subrecords to the end of the PDF portion of the database.

WARNING:
This procedure is for advanced users only. Improper use could damage or destroy your part database.

Syntax

PutSrR(mib, srtype, nbytes, rbuf(1), error)

Parameters

mib:
Integer4 expression (input)

Specifies the MIB number of the entity to put the new

subrecord on.

srtype:
String expression of 2 characters (input)

Specifies the two‑character subrecord type.

nbytes:
Integer expression (input)

Specifies the number of bytes of valid data in rbuf for the new

subrecord.

G‑127
Database Format

Database Format

PutsrS

Type

Intrinsic Procedure
Database Access

Purpose

Puts, or adds, a database subrecord that consists of only string data to the PDF portion of the database. This procedure is similar to the PutSr procedure except that no variable basing or data type conversion is necessary.

There are two ways to use the PutSrS procedure:

1.
The first way is for adding a subrecord to an existing entity.

2.
The second is for adding a whole entity to the database. In the latter case, you must first make a call to the AddEnt intrinsic procedure to set up the MIB portion of the database. Then you make calls to "put" or write database subrecords to the end of the PDF portion of the database.

WARNING:
This procedure is for advanced users only. Improper use could damage or destroy your part database.

Syntax

PutSrS(mib, srtype, nbytes, sbuf, error)

Parameters

mib:
Integer4 expression (input)

Specifies the MIB number of the entity to put the new

subrecord on.

srtype:
String expression of 2 characters (input)

Specifies the two‑character subrecord type.

nbytes:
Integer expression (input)

Specifies the number of bytes of valid data in sbuf for the new

subrecord. lt is this parameter and not the sbuf.LENGTH

attribute that defines how many bytes are put in the subrecord.

sbuf:
String variable of nbytes characters (input/output)

This buffer specifies the new subrecord data. The maximum

buffer size is 12.000 characters.

G‑128
UPL Revision 6.0

Database Format

error:
Integer variable (input/output)

This parameter returns the error condition:

0
no errors were found.

1
an IO error was found.

4
an invalid MIB number was given.

G‑129
Database Format

Database Format

ReadEnt

Type

Intrinsic Procedure
Database Access

Purpose

Returns MIB information for an entity.

Syntax

ReadEnt (mib, mdata(1))

Parameters

mib:
Integer4 expression (input)

Specifies the entity number to query.

mdata:
Integer array of 8 elements (input/output)

This array returns entity index data:

mdata(1)
entity type; if less than 0 this is an

erased entity.

mdata(2)
low word of PDF pointer.

mdata(3)
high word of PDF pointer.

mdata(4)
layer entity is on.

mdata(5)
view of visibility.

mdata(6)
group number.

mdata(7)
font number

mdata(8)
color number.

G‑130
UPL Revision 6.0

Database Format

RSubrecAC

Type

Intrinsic Procedure
Database Access

Purpose

Reads the contents of an AC type subrecord. The AC subrecord holds data about an arc entity.

WARNING: This procedure is for advanced users only.

Syntax

RSubrecAC(mib, occur, error, transform(1), radius, abeg, aend)

Parameters

mib:
Integer4 expression (input)

Specifies the MIB number of the entity that contains the AC

subrecord. A string consists of one or more line segments.

occur:
Integer expression (input)

Specifies which occurrence of the AC subrecord to modify. lf

there is one or more AC subrecord for a given entity, use this

parameter to specify the particular subrecord. The occurrenees

start at one and increase with each additional occurrence. lf a

specified occurrence of the subrecord does not exist, an error

code of three is returned in the error parameter.

Programming Tip: To call this procedure, give the MIB

number for the entity and the first occurrence of the subrecord

you want to access. Subsequent calls with the same MIB

number, and a negative one for the occur parameter, will

automatically access the next AC subrecord. An error three

will be returned if there are no more AC subrecords. Using

this programming tip is faster than incrementing the occur

parameter for each occurrence of the subrecord.

error:
Integer variable (input/output) Returns the error condition:

0
no errors were found.

1
an IO error was found.

3
the subrecord was not found.

4
an invalid MIB number was given.

G‑131
Database Format

Database Format

transform:
Real array of 12 elements (input/output) Returns the arc's view transform. This transformation matrix defines the plane which the arc lies in. Usually, this is the view the are was created in. Elements 10, 11, and 12 are the origin of the arc.

radius:
Real variable (input/output) This returns the radius of the arc

in database units.

abeg:
Real variable (input/output)

Returns the beginning angle of the arc in radians. Angle zero

starts at the X‑axis and increases counterclockwise. The

X‑axis is defined by the arc's view transform.

aend:
Real variable (input/output)

This returns the ending angle of the arc in radians. Angle zero

starts at the X‑axis and increases counterclockwise. The

X‑axis is defined by the arc's view transforrn.

G‑132
UPL Revision 6.0

Database Format

RSubrecAP

Type

Intrinsic Procedure
Database Access

Purpose

Reads the contents of an AP type subrecord. The AP subrecord holds data about partial arcs used in angular dimensions.

WARNING: This procedure is for advanced users only.

Syntax

RSubrecAP(mib, occur, error, org, radius1, abeg1, aend1,

 radius2, abeg2, aend2)

Parameters

mib:
Integer4 expression (input) Specifies the MIB number of the

entity that contains the AP subrecord.

occur:
Integer expression (input) Specifies which occurrence of the

AP subrecord to modify. If there is one or more AP subrecord

for a given entity, use this parameter to specify the particular

subrecord. The occurrences start at one and increase with each

additional occurrence. lf a specified occurrence of the

subrecord does not exist, an error code of three is returned in

the error Parameter.

Programming Tip: To call this procedure, give the MIB

number for the entity and the first occurrence of the subrecord

you want to access. Subsequent calls with the same MIB

number, and a negative one for the occur parameter, will

automatically access the next AP subrecord. An error three

will be retumed if there are no more AP subrecords. Using

this programming tip is faster than incrementing the occur

parameter for each subrecord occurrence.

error:
Integer variable (input/output) Returns the error condition:

0
no errors were found.

1
an IO error was found.

3
the subrecord was not found.

4
an invalid MIB number was given.

G‑133
Database Format

Database Format

org:
Coordinate variable (input/output) This returns the origin of

the arc(s) in model coordinates.

radius1:
Real variable (input/output) This returns the radius of the first

arc.

abeg1:
Real variable (input/output)

This returns the beginning angle of the first arc in radians.

Angle zero starts at the X‑axis and increases counterclockwise.

The X‑axis is defined by the are's view transform.

aend1:
Real variable (input/output) This returns the ending angle of

the first arc in radians. Angle zero starts at the X‑axis and

increases counterclockwise. The X‑axis is defined by the arc's

view transform.

radius2:
Real variable (input/output) Returns the radius of the second

arc in database units. The default is inches.

abeg2:
Real variable (input/output) Returns the beginning angle of

the second arc.

aend2:
Real variable (input/output) Returns the ending angle of the

second arc in radians. Angle zero starts at the X‑axis and

increases counterclockwise. The X‑axis is defined by the arc's

view transform.

G‑134
UPL Revision 6.0

Database Format

RSubrecDS

Type

Intrinsic Procedure
Database Access

Purpose

Reads the contents of a DS type subrecord. The DS subrecord holds data about the display image that was saved in the Personal Designer SAVE IMAGE command.

WARNING: This procedure is for advanced users only.

Syntax

RSubrecDS(mib, occur, error, extents(1), scrscl, viewno, dispno)

Parameters

mib:
Integer4 expression (input)

Specifies the MIB number of the entity that contains the DS

subrecord.

occur:
Integer expression (input)

Specifies which occurrence of the DS subrecord to modify. If

there is one or more DS subrecord for a given entity, use this

parameter to specify the particular subrecord. The occurrences

start at one and increase with each additional occurrence. lf a

specified occurrence of the subrecord does not exist, an error

code of three is returned in the error parameter.

Programming Tip: To call this procedure, give the MIB

number for the entity and the first occurrence of the subrecord

you want to access. Subsequent calls with the same MIB

number, and a negative one for the occur parameter, will

automatically access the next DS subrecord. An error three

will be returned if there are no more DS subrecords. Using

this programming tip is faster than incrementing the occur

parameter for each occurrence of the subrecord.

G‑135
Database Format

Database Format

error:
Integer variable (input/output)

This parameter returns the error condition:

0
no errors were found.

1
an IO error was found.

3
the subrecord was not found.

4
an invalid MIB number was given.

extents:
Real array of 4 elements (input/output)

Returns the maximum and minimum values used in a display

image. They are given as X‑minimum and maximum

followed by Y‑minimum and maximum.

scrscl:
Real variable (input/output)

Returns the display screen scale.

viewno:
Integer variable (input/output)

Returns the view number associated with the display image.

dispno:
Integer variable (input/output)

Returns the display image number.

G‑136
UPL Revision 6.0

Database Format

RSubrecEX

Type

Intrinsic Procedure
Database Access

Purpose

Reads the contents of an EX type subrecord. The EX subrecord holds data about the extents of a part or figure in 3D space.

WARNING: This procedure is for advanced users only.

Syntax

RSubrecEX(mib, occur, error, extents (1))

Parameters

mib:
Integer4 expression (input)

Specifies the MIB number of the entity that contains the

EX subrecord.

occur:
Integer expression (input)

Specifies which occurrence of the EX subrecord to modify. If

there is one or more EX subrecord for a given entity, use this

parameter to specify the particular subrecord. The occurrences

start at one and increase with each additional occurrence. lf a

specified occurrence of the subrecord does not exist, and error

code of three is returned in the error parameter.

Programming Tip: To call this procedure, give the MIB

number for the entity and the first occurrence of the subrecord

you want to access. Subsequent calls with the same MIB

number, and a negative one subrecord. An error three will be

returned if there are no more EX subrecords. using this

programming tip is faster than incrementing the occur

parameter for each occurrence of the subrecord.

error:
Integer variable (input/output) Returns the error condition:

0
no errors were found.

1
an IO error was found.

3
the subrecord was not found.

4
an invalid MIB number was given.

G‑137
Database Format

Database Format

extents:
Real array of 24 elements (input/output)

The extents parameter returns the range of X, Y, and Z values

used in a part or figure. This parameter can be used in two

ways.

1.
The first holds the eight X, Y, and Z values that define the

corners of an imaginary cube which surrounds all part or figure geometry. This method is used primarily by Personal Designer.

2.
The second way, used by surfacing in Personal Designer,

holds the six minirnum and maximum values used by any

entity in the database. These are specified in the following

order: minimum x, maximum X, minimum Z, maximum Z.

The same imaginary cube can be ereated by generating planes normal to XYZ areas and passing through the six points.

G‑138
UPL Revision 6.0

Database Format

RSubrecIL

Type

Intrinsic Procedure
Database Access

Purpose

Reads the contents of an IL type subrecord. The IL subrecord holds data about a figure image list to be inserted in the current part.

WARNING: This procedure is for advanced users only.

Syntax

RSubreelL(mib, occur, error, figname, mib, entcount,

 figdate, figtime)

Parameters

mib:
Integer4 expression (input) Specifies the MIB number of the

entity that contains the IL subrecord.

occur:
Integer expression (input) Specifies which occurrence of the

IL subrecord to modify. lf there is one or more IL subrecord

for a given entity, use this parameter to specify the particular

subrecord. The occurrences start at one and increase with each

additional occurrence. lf a specified occurrence of the

subrecord does not exist, an error code of three is returned in

the error parameter.

Programming Tip: To call this procedure, give the MIB

number for the entity and the first occurrence of the subrecord

you want to access. Subsequent calls with the same MIB

number, and a negative one for the occur parameter, will

automatically access the next IL subrecord. An error three will

be returned if there are no more IL subrecords. Using this

programming tip is faster than incrementing the occur

parameter for each occurrence of the subrecord.

G‑139
Database Format

Database Format

error:
Integer variable (input/output)

This parameter returns the error condition:

0
no errors were found.

1
an IO error was found.

3
the subrecord was not found.

4
an invalid MIB number was given.

figname:
String variable of 64 characters (input/output)

Returns the figure file name including the full path narne.

mib:
Integer4 variable (input/output)

Returns the MIB number of the first entity in the figure image

list.

entcount:
Integer variable (input/output)

Retums the number of entities in the figure starting with the

mib parameter.

figdate:
Integer variable (input/output)

Returns the system file date of the figure part file.

figtime:
Integer variable (input/output)

Retums the system file time of the figure part file.

G‑140
UPL Revision 6.0

Database Format

RsubrecL1

Type

Intrinsic Procedure
Database Access

Purpose

Reads the contents of an L 1 type subrecord. The L 1 subrecord holds data about dimension extension line one in a dimension entity.

WARNING: This procedure is for advanced users only.

Syntax

RsubrecL1(mib, occur, error, pnt1, pnt2)

Parameters

mib:
Integer4 expression (input) Specifies the MIB number of the

entity that contains the L1 subrecord.

occur:
Integer expression (input) Specifies which occurrence of the

L1 subrecord to modify. lf there is one or more L1 subrecord

for a given entity, use this parameter to specify the particular

subrecord. The occurrences start at one and increase with each

additional occurrence. lf a specified occurrence of the

subrecord does not exist, an error code of three is returned in

the error parameter.

Programming Tip: To eall this procedure, give the MIB

number for the entity and the first occurrence of the subrecord

you want to access. Subsequent calls with the same MIB

number, and a negative one for the occur parameter, will

automatically access the next L1 subrecord. An error three

will be returned if there are no more L1 subrecords. Using this

programming tip is faster than incrementing the occur

parameter for each occurrence of the subrecord.

error:
Integer variable (input/output) Returns the error condition:

0
no errors were found.

1
an IO error was found.

3
the subrecord was not found.

4
an invalid MIB number was given.

G‑141
Database Format

Database Format

pnt1:
Coordinate variable (input/output) Returns the first endpoint

of the extension line in model coordinates.

pnt2:
Coordinate variable (input/output)

Returns the second endpoint of the extension line in model

coordinates.

G‑142
UPL Revision 6.0

Database Format

RSubrecL2

Type

Intrinsic Procedure
Database Access

Purpose

Reads the contents of an L2 type subrecord. The L2 subrecord holds data about dimension extension line two in a dimension entity.

WARNING: This procedure is for advanced users only.

Syntax

RSubrecL2(mib, occur, error pnt1, pnt2)

Parameters

mib:
Integer4 expression (input)

Specifies the MIB number of the entity that contains the

L2 subrecord.

occur:
Integer expression (input)

Specifies which occurrence of the L2 subrecord to modify. lf

there is one or more L2 subrecord for a given entity, use this

parameter to specify the particular subrecord. The occurrences

start at one and increase with each additional occurrence. lf a

specified occurrence of the subrecord does not exist, an error

code of three is returned in the error parameter.

Programming Tip: To call this procedure, give the MIB

number for the entity and the first occurrence of the subrecord

you want to access. Subsequent calls with the same MIB

number, and a negative one for the occur parameter, will

automatically access the next L2 subrecord. An error three

will be returned if there are no more L2 subrecords. Using this

programming tip is faster than inerementing the occur

parameter for each occurrence of the subrecord.

G‑143
Database Format

Database Format

error:
Integer variable (input/output)

This parameter returns the error condition:

0
no errors were found.

1
an IO error was found.

3
the subrecord was not found.

4
an invalid MIB number was given.

pnt1:
Coordinate variable (input/output)

Returns the first endpoint of the extension line in model

coordinates.

pnt2:
Coordinate variable (input/output)

Retums the second endpoint of the extension line in model

coordinates.

G‑144
UPL Revision 6.0

Database Format

RSubrecPA

Type

Intrinsic Procedure
Database Access

Purpose

Reads the contents of a PA type subrecord. The PA subrecord holds data about entity properties on an entity.

WARNING: This procedure is for advanced users only.

Syntax

RSubrecPA(mib, occur, error, pname, ptype, pval)

Parameters

mib:
Integer4 expression (input)

Specifies the MIB number of the entity that contains the

PA subrecord.

occur:
Integer expression (input)

Specifies which occurrence of the PA subrecord to modify. lf

there is one or more PA subrecord for a given entity, use this

parameter to specify the particular subrecord. The occurrenees

start at one and increase with each additional occurrence. If a

specified occurrence of the subrecord does not exist, an error

code of three is returned in the error parameter.

Programming Tip: To call this procedure, give the MIB

number for the entity and the first occurrence of the subrecord

you want to access. Subsequent calls with the same MIB

number, and a negative one for the occur parameter, will

automatically access the next PA subrecord. An error three

will be returned if there are no more PA subrecords. Using this

programming tip is faster than incrementing the occur

parameter for each occurrence of the subrecord.

G‑145
Database Format

Database Format

error:
Integer variable (input/output)

This parameter returns the error condition:

0
no errors were found.

1
an IO error was found.

3
the subrecord was not found.

4
an invalid MIB number was given.

pname:
String variable of 8 characters (input/output)

Retums the property name.

ptype:
String variable of 7 characters (input/output)

Returns the property type.

pval:
String variable of 100 characters (input/output)

Retums the property value.

G‑146
UPL Revision 6.0

Database Format

RSubrecPX

Type

Intrinsic Procedure
Database Access

Purpose

Reads the contents of a PX type subrecord. The PX subrecord holds data about a point.

WARNING: This procedure is for advanced users only.

Syntax

RSubrecPX(mib, occur, error, pnt)

Parameters

mib:
Integer4 expression (input) Specifies the MIB number of the

entity that contains the PX subrecord.

occur:
Integer expression (input) Specifies which occurrence of the

PX subrecord to modify. lf there is one or more PX subrecord

for a given entity, use this parameter to specify the subrecord.

The occurrences start at one and inerease with each additional

occurrence. If a specified occurrence of the subrecord does not

exist, an error code of three is returned in the error parameter.

Programming Tip: To call this procedure, give the MIB

number for the entity and the first occurrence of the subrecord

you want to access. Subsequent calls with the same MIB

number, and a negative one for the occur parameter, will

automatically access the next PX subrecord. An error three

will be retumed if there are no more PX subrecords. Using

this programming tip is faster than incrementing the occur

parameter for each occurrence of the subrecord.

error:
Integer variable (input/output) Returns the error condition:

0
no errors were found.

1
an IO error was found.

3
the subrecord was not found.

4
an invalid MIB number was given.

pnt:
Coordinate variable (input/output) Returns the X, Y, Z

locations of the point in model coordinates.

G‑147
Database Format

Database Format

RSubrecTD

Type

Intrinsic Procedure
Database Access

Purpose

Reads the contents of a TD type subrecord. The TD subrecord holds data about text format and orientation used in text dimension labels and MView entities.

WARNING: This procedure is for advanced users only.

Syntax

RSubrecTD(mib, occur, error, transform(1), height,

width, linesp, just(1))

Parameters

mib:
Integer4 expression (input)

Specifies the MIB number of the entity that contains the

TD subrecord.

occur:
Integer expression (input)

Specifies which occurrence of the TD subrecord to modify. lf

there is one or more TD subrecord for a given entity, use this

parameter to specify the particular subrecord. The occurrences

start at one and increase with each additional occurrence. If a

specified occurrence of the subrecord does not exist, an error

code of three is returned in the error parameter.

Programming Tip: To call this procedure, give the MIB

number for the entity and the first occurrence of the subrecord

you want to access. Subsequent calls with the same MIB

number, and a negative one for the occur parameter, will

automatically access the next TD subrecord. An error three

will be returned if there are no more TD subrecords. Using

this programming tip is faster than incrementing the occur

parameter for each occurrence of the subrecord.

G‑148
UPL Revision 6.0

Database Format

error:
Integer variable (input/output)

This parameter returns the error condition:

0
no errors were found.

1
an IO error was found.

3
the subrecord was not found.

4
an invalid MIB number was given.

transform:
Real array of 12 elements (input/output)

Returns the text's view transforrn. This transformation matrix

defines the plane the text lies in. Usually, this is the view the

arc was created in. Elements 10, 11, and 12 are the origin of

the arc. Only the first six elements of transform (X and Y), are

used for the view transform.

height:
Real variable (input/output)

Returns the text height.

width:
Real variable (input/output)

Returns the text width.

linesp:
Real variable (input/output)

Returns the line spacing, in database units.

just:
Integer array of 6 elements (input/output)

This array returns text justification.

Values for just(1) are:

1 = left justification.

2 = right justification.

3 = center justification.

just(2 ‑ 6) are reserved; do not use.

G‑149
Database Format

Database Format

RSubrecTF

Type

Intrinsic Procedure
Database Access

Purpose

Reads the contents of a TF type subrecord. The TF subrecord holds data about a figure instance which is inserted into a part.

WARNING: This procedure is for advanced users only.

Syntax

RSubrecTF(mib, occur, error, transform(1), figuremib)

Parameters

mib:
Integer4 expression (input)

Specifies the MIB number of the entity that contains the TF

subrecord.

occur:
Integer expression (input)

Specifies which occurrence of the TF subrecord to modify. If

there is one or more TF subrecord for a given entity, use this

parameter to specify the particular subrecord. The occurrences

start at one and increase with each additional occurrence. lf a

specified occurrence of the subrecord does not exist, an error

code of three is returned in the error parameter.

Programming Tip: To call this procedure, give the MIB

number for the entity and the first occurrence of the subrecord

you want to access. Subsequent calls with the same MIB

number, and a negative one for the occur parameter, will

automatically access the next TF subrecord. An error three

will be returned if there are no more TF subrecords. Using this

programming tip is faster than incrementing the occur

parameter for each occurrence of the subrecord.

G‑150
UPL Revision 6.0

Database Format

error:
Integer variable (input/output)

This parameter returns the error condition:

0
no errors were found.

1
an IO error was found.

3
the subrecord was not found.

4
an invalid MIB number was given.

transform:
Real array of 15 elements (input/output)

The first nine elements of the transformation matrix return the

figure viewing rnatrix. Elements 10, 11, and 12 are the figure

origin. Elements 13, 14, and 15 return the figure's X, Y, and Z

scale factors.

figuremib:
Integer4 variable (input/output)

Returns the MIB number of the figure definition entity.

G‑151
Database Format

Database Format

RSubrecTX

Type

Intrinsic Procedure
Database Access

Purpose

Reads the contents of a TX type subrecord. The TX subrecord holds the text of a text string used in a text, dimension, MView, curve, or surface entity.

WARNING: This procedure is for advanced users only.

Syntax

RSubrecTX(mib, occur, error, textstring)

Parameters

mib:
Integer4 expression (input) Specifies the MIB number of the

entity that contains the TX subrecord.

occur:
Integer expression (input) Specifies which occurrence of the

TX subrecord to modify. lf there is one or more TX subrecord

for a given entity, use this parameter to specify the particular

subrecord. The occurrences start at one and increase with each

additional occurrence. If a specified occurrence of the

subrecord does not exist, an error code of three is returned in

the error parameter.

Programming Tip: To call this procedure, give the MIB

number for the entity and the first occurrence of the subrecord

you want to access. Subsequent calls with the same MIB

number, and a negative one for the occur parameter, will

automatically access the next TX subrecord. An error three

will be returned if there are no more TX subrecords. Using

this programming tip is faster than inerementing the occur

parameter for each occurrence of the subrecord.

error:
Integer variable (input/output) Retums the error condition:

0
no errors were found.

1
an IO error was found.

3
the subrecord was not found.

4
an invalid MIB number was given.

textstring:
String expression (input/output) Returns the text string.

G‑152
UPL Revision 6.0

Database Format

RSubrecVN

Type

Intrinsic Procedure
Database Access

Purpose

Reads the contents of a VN type subrecord. The VN subrecord holds data about a defined view. Note that there is no entity records and therefore no VN subrecords for the six predefined views.

WARNING: This procedure is for advanced users only.

Syntax

RSubrecVN(mib, occur, error, transform(1))

Parameters

mib:
Integer4 expression (input) Specifies the MIB number of the

entity that contains the VN subrecord.

occur:
Integer expression (input) Specifies which occurrence of the

VN subrecord to modify when more than one is present for a

given entity. The occurrences start at one and increase with

each additional occurrence. lf a specified occurrence of the

subrecord does not exist, an error code of three is returned.

Programming Tip: To call this procedure, give the MIB number

for the entity and the first occurrence of the subrecord you want

to access. Subsequent calls with the same MIB number, and a

negative one for the occur pararneter, automatically access the

next VN subrecord. An error three is returned if there are no

more VN subrecords. Using this tip is faster than inerementing

the occur parameter for each occurrence of the subrecord.

error:
Integer variable (input/output) Returns the error condition:

0
no errors were found.

1
an IO error was found.

3
the subrecord was not found.

4
an invalid MIB number was given.

transform:
Real array of 15 elements (input/output) Returns the view

transformation matrix. Only the first nine elements of

transform are used. The offset and scaling factors are not

modified.

G‑153
Database Format

Database Format

RSubrecXH

Type

Intrinsic Procedure
Database Access

Purpose

Reads the contents of an XH type subrecord. The XH subrecord holds data about cross‑hatch lines used in cross‑hatch entities.

WARNING: This procedure is for advanced users only.

Syntax

RSubrecXH(mib, occur, error, endpoints, npnts)

Parameters

mib:
Integer4 expression (input)

Specifies the MIB number of the entity that contains the XH

subrecord.

occur:
Integer expression (input)

Specifies which occurrence of the XH subrecord to rnodify. lf

there is one or more XH subrecord for a given entity, use this

parameter to specify the particular subrecord. The occurrenees

start at one and increase with each additional occurrence. lf a

specified occurrence of the subrecord does not exist, an error

code of three is returned in the error parameter.

Programming Tip: To call this procedure, give the MIB

number for the entity and the first occurrence of the subrecord

you want to access. Subsequent calls with the same MIB

number, and a negative one for the occur parameter, will

automatically access the next XH subrecord. An error three

will be returned if there are no more XH subrecords. Using

this prograrnming tip is faster than incrementing the occur

parameter for each occurrence of the subrecord.

G‑154
UPL Revision 6.0

Database Format

error:
Integer variable (input/output)

This parameter returns the error condition:

0
no errors were found.

1
an IO error was found.

3
the subrecord was not found.

4
an invalid MIB number was given.

endpoints:
Coordinate array of nvert elements (input/output)

Returns the endpoints of the cross‑hatch lines. This parameter

contains pairs of endpoints rather than the cross‑hatch

boundaries.

npnts:
Integer expression (input/output)

This returns the number of endpoints in the endpoints

parameter. The maximum number of lines returned is 500; and

therefore 1.000 endpoints for each cross‑hatch area.

G‑155
Database Format

Database Format

RSubrecXN

Type

Intrinsic Procedure
Database Access

Purpose

Reads the contents of an XN type subrecord. The XN subrecord holds the vertices of a string used in a string, label, arrow, dimension, cross‑hatch, MView, curve, or surface entity. A string consists of two or more line segments.

WARNING: This procedure is for advanced users only.

Syntax

RSubrecXN(mib, occur, error, vertices(1), nvert)

Parameters

mib:
Integer4 expression (input)

Specifies the MIB number of the entity that contains the

XN subrecord.

occur:
Integer expression (input)

Speeifies which occurrence of the XN subrecord to modify. If

there is one or more XN subrecord for a given entity, use this

parameter to specify the particular subrecord. The occurrences

start at one and increase with each additional occurrence. lf a

specified occurrence of the subrecord does not exist, an error

code of three is returned in the error parameter.

Programming Tip: To call this procedure, give the MIB

number for the entity and the first occurrence of the subrecord

you want to access. Subsequent calls with the same MIB

number, and a negative one for the occur parameter, will

automatically access the next XN subrecord. An error three

will be returned if there are no more XN subrecords. Using

this programming tip is faster than incrernenting the occur

parameter for each occurrence of the subrecord.

G‑156
UPL Revision 6.0

Database Format

error:
Integer variable (input/output)

This parameter returns the error condition:

0
no errors were found.

1
an IO error was found.

3
the subrecord was not found.

4
an invalid MIB number was given.

vertices:
Coordinate array of nvert elements (input/output)

Returns string vertices.

nvert:
Integer variable (input/output)

This returns the number of vertices in the vertices parameter.

G‑157
Database Format

Database Format

RSubrecXZ

Type

Intrinsic Procedure
Database Access

Purpose

Reads the contents of an XZ type subrecord in the PDF portion of the part database. The XZ subrecord holds data about the endpoints of a line.

WARNING: This procedure is for advanced users only.

Syntax

RSubrecXZ(mib, occur, error, pnt1, pnt2)

Parameters

mib:
Integer4 expression (input)

Specifies the MIB number of the entity that contains the XZ

subrecord.

occur:
Integer expression (input)

Specifies which occurrence of the XZ subrecord to modify. lf

there is one or more XZ subrecord for a given entity, use this

parameter to specify the particular subrecord. The occurrences

start at one and increase with each additional occurrence. lf a

specified occurrence of the subrecord does not exist, an error

code of three is returned in the error parameter.

Programming Tip: To call this procedure, give the MIB

number for the entity and the first occurrence of the subrecord

you want to access. Subsequent calls with the same MIB

number, and a negative 1 for the occur parameter, will

automatically access the next XZ subrecord. An error three

will be returned if there are no more XZ subrecords. Using this

programming tip is faster than incrementing the occur

parameter for each occurrence of the subrecord.

G‑158
UPL Revision 6.0

Database Format

error:
Integer variable (input/output)

Returns the error condition:

0
no errors were found.

1
an IO error was found.

3
the subrecord was not found.

4
an invalid MIB number was given.

pnt1:
Coordinate variable (input/output)

Returns the first endpoint of the line.

pnt2:
Coordinate variable (input/output)

Returns the second endpoint of the line.

G‑159
Database Format

Database Format

WriteEnt

Type

Intrinsic Procedure
Database Access

Purpose

Modifies entity index (or MIB) information. Note that the PDF pointer cannot be modified. To add a new entity index, use AddEnt. See ReadEnt for more information.

WARNING:
This procedure is for advanced users only. Incorrect use could damage or destroy your part database.

Syntax

WriteEnt(mib, mdata(1))

Parameters

mib:
Integer4 expression (input)

Specifies the entity MIB number of the entity to modify.

mdata:
Integer array of 8 elements (input/output)

Specifies entity index data:

mdata(1)
entity type; if less than 0, this will

erase the entity.

mdata(2)
low word of PDF pointer; this value

is not modified.

mdata(3)
high word of PDF pointer; this

value is not modified.

mdata(4)
layer entity is on.

mdata(5)
view of visibility.

mdata(6)
group number.

mdata(7)
font number.

mdata(8)
color number.

G‑160
UPL Revision 6.0

Database Format

WSubrecAC

Type

Intrinsic Procedure
Database Access

Purpose

Writes an AC type subrecord to the PDF portion of the database. The AC subrecord holds data about an arc entity. Write an AC subrecord when you are adding a new entity to the database with the intrinsic procedure AddEnt.

WARNING:
This procedure is for advanced users only. Incorrect use could damage or destroy your part database.

Syntax

WSubrecAC(mib, error, transform(1), radius, abeg, aend)

Parameters

mib:
Integer4 expression (input) Specifies the MIB number of the

entity that will contain the AC subrecord.

error:
Integer variable (input/output)

This parameter returns the error condition:

0
no errors were found.

1
an IO error was found.

4
an invalid MIB number was given.

transform:
Real array of 12 elements (input/output) Specifies the arc's

view transform. This transformation matrix defines the plane

which the arc lies in. Usually, this is the view the arc was

created in. Elements 10, 11, and 12 are the origin of the arc.

radius:
Real expression (input)

Specifies the radius of the arc in database units.

abeg:
Real expression (input)

Specifies the beginning angle of the arc in radians. Angle zero

starts at the X‑axis and increases counterclockwise. The

X‑axis is defined by the arc's view transform.

aend:
Real expression (input) Specifies the ending angle of the arc

in radians. Angle zero starts at the X‑axis and increases

counterclockwise. The X‑axis is defined by the arc's view

transform.

G‑161
Database Format

Database Format

WSubrecAP

Type

Intrinsic Procedure
Database Access

Purpose

Writes an AP type subrecord to the PDF portion of the database. The AP subrecord holds data about partial arcs used in angular dimensions. Write an AP subrecord when you are adding a new angular dimension entity to the database with the intrinsic procedure AddEnt.

WARNING:
This procedure is for advanced users only. Incorrect use could damage or destroy your part database

Syntax

WSubrecAP(mib, error, org, radius1, abeg1, aend1, radius2,

abeg2, aend2)

Parameters

mib:
Integer4 expression (input)

Specifies the MIB number of the entity that will contain the

AP subrecord.

error:
Integer variable (input/output)

This parameter returns the error condition:

0
no errors were found.

1
an IO error was found.

4
an invalid MIB number was given.

org:
Coordinate expression (input)

Specifies the origin of the arc(s) in model coordinates.

radius1:
Real expression (input)

Specifies the radius of the first arc in database units.

abeg1:
Real expression (input)

Specifies the beginning angle of the first arc in radians. Angle

zero starts at the X‑axis and increases counterclockwise. The

X‑axis is defined by the arc's view transform.

G‑162
UPL Revision 6.0

Database Format

aend1:
Real expression (input)

Specifies the ending angle of the first arc in radians. Angle

zero starts at the X‑axis and increases counterclockwise. The

X‑axis is defined by the arc's view transform.

radius2:
Real expression (input)

Specifies the radius of the second arc in database units.

abeg2:
Real expression (input)

Specifies the beginning angle of the second are in radians.

Angle zero starts at the X‑axis and increases counterclockwise.

The X‑axis is defined by the arc's view transform.

aend2:
Real expression (input)

Specifies the ending angle of the second are in radians. Angle

zero starts at the X‑axis and increases counterclockwise. The

X‑axis is defined by the arc's view transform.

G‑163
Database Format

Database Format

WSubrecDS

Type

Intrinsic Procedure
Database Access

Purpose

Writes a DS type subrecord to the PDF portion of the database. The DS subrecord holds data about the display image that was saved in the Personal Designer command SAVE IMAGE. Write a DS subrecord when you are adding a new display image entity to the database with the intrinsic procedure AddEnt.

WARNING:
This procedure is for advanced users only. Ineorrect use could damage or destroy your part database.

Syntax

WSubrecDS(mib, error, extents(1), scrscl, viewno, dispno)

Parameters

mib:
Integer4 expression (input)

Specifies the MIB number of the entity that will contain the

DS subrecord.

error:
Integer variable (input/output)

This parameter returns the error condition:

0
no errors were found.

1
an IO error was found.

4
an invalid MIB number was given.

extents:
Real array of 4 elements (input/output)

Specifies the maximum and minimum values used in a display

image. They are given as X minimum and maximum

followed by Y minimum and maximum.

scrscl:
Real expression (input)

Specifies the display image's screen scale.

viewno:
Integer expression (input)

Specifies the view number associated with the display image.

dispno:
Integer expression (input)

Specifies the display image number.

G‑164
UPL Revision 6.0

Database Format

WSubrecEX

Type

Intrinsic Procedure
Database Access

Purpose

Writes an EX type subrecord to the PDF portion of the database. The EX subrecord holds data about the extents of a part or figure in 3D space. Write an EX subrecord when you are adding new entities to the database with the intrinsic procedure AddEnt.

WARNING:
This procedure is for advanced users only. Incorrect use could damage or destroy your part database.

Syntax

WSubrecEX(mib, error, extents(1))

Parameters

mib:
Integer4 expression (input)

Specifies the MIB number of the entity that will contain the

EX subrecord.

error:
Integer variable (input/output)

This parameter returns the error condition:

0
no errors were found.

1
an IO error was found.

4
an invalid MIB number was given.

extents:
Real array of 24 elements (input/output)

Specifies the range of X, Y, and Z values used in a drawing or

figure. This parameter can be used in two ways.

1 .
The first holds the eight and X, Y, and Z values that define the

corners of an imaginary cube which surrounds all part or

figure geometry. This method is used primarily by Personal Designer.

2.
The second way, used with surfacing, specifies the six minimum and maximurn values used by any entity in the database. These are specified in the following order: minimum X, maximum X, minimum Y, rnaximum Y, minimum Z, maximum Z. The same imaginary cube can be created by generating planes normal to X, Y, and Z axes and passing through the six points.

G‑165
Database Format

Database Format

WSubrecIL

Type

Intrinsic Procedure
Database Access

Purpose

Writes an IL type subrecord to the PDF portion of the database. The IL subrecord holds data about a figure image that is to be inserted in the current part. Write an IL subrecord when you are adding a new figure image entity to the database with the intrinsic procedure AddEnt.

WARNING:
This procedure is for advanced users only. Incorrect use could damage or destroy your part database.

Syntax

WSubrecIL(mib, error, figname, figmib, entcount, figdate,

figtime)

Parameters

mib:
Integer4 expression (input)

Specifies the MIB number of the entity that will contain the

IL subrecord.

error:
Integer variable (input/output)

This parameter returns the error condition:

0
no errors were found.

1
an IO error was found.

4
an invalid MIB number was given.

figname:
String expression of 64 charaeters (input)

Specifies the figure file name including the full path name.

figmib:
Integer expression (input)

Specifies the MIB number of the first entity in the figure image

list.

entcount:
Integer expression (input)

Specifies the number of entities in the figure starting with the

mib parameter.

G‑166
UPL Revision 6.0

Database Format

figdate:
Integer expression (input)

Specifies the system file date of the figure part file. This is the

date the file was last modified. See Appendix E, Internal Data

Storage Format, for more information.

figtime:
Integer expression (input)

Specifies the system file time of the figure part file. This is the

time the file was last modified. See Appendix E, Internal Data

Storage Format, for more information.

G‑167
Database Format

Database Format

WSubrecL1

Type

Intrinsic Procedure
Database Access

Purpose

Writes an L1 type subrecord to the PDF portion of the database. The L 1 subrecord holds data about dimension extension line one. Write an LI subrecord when you are adding a new dimension entity to the database with the intrinsic procedure AddEnt.

WARNING:
This procedure is for advanced users only. Incorrect use could damage or destroy your part database.

Syntax

WsubrecL1(mib, error, pnt1, pnt2)

Parameters

mib:
Integer4 expression (input)

Specifies the MIB number of the entity that will contain the L1

subrecord.

error:
Integer variable (input/output)

This parameter returns the error condition:

0
no errors were found.

1
an IO error was found.

4
an invalid MIB nurnber was given.

pnt1:
Coordinate expression (input)

Specifies the first endpoint of extension line one.

pnt2:
Coordinate expression (input)

Specifies the second endpoint of extension line one.

G‑168
UPL Revision 6.0

Database Format

WSubrecL2

Type

Intrinsic Procedure
Database Access

Purpose

Writes an L2 type subrecord to the PDF portion of the database. The L2 subrecord holds data about dimension extension line two. Write an L2 subrecord when you are adding a new dimension entity to the database with the intrinsic procedure AddEnt.

WARNING:
This procedure is for advanced users only. Incorrect use could damage or destroy your part database.

Syntax

WSubrecL2(mib, error, pnt1, pnt2)

Parameters

mib:
Integer4 expression (input) Specifies the MIB number of the

entity that will contain the L2 subrecord.

error:
Integer variable (input/output) Returns the error condition:

0
no errors were found.

1
an IO error was found.

4
an invalid MIB number was given.

pnt1:
Coordinate expression (input)

Specifies the first endpoint of extension line two.

pnt2:
Coordinate expression (input)

Specifies the second endpoint of extension line two.

G‑169
Database Format

Database Format

WSubrecPA

Type

Intrinsic Procedure
Database Access

Purpose

Writes a PA type subrecord to the PDF portion of the database. The PA subrecord holds data about entity properties. Write a PA subrecord when you are adding a new entity to the database with the intrinsic procedure AddEnt. You can also use this procedure to add property subrecords to existing entities.

WARNING:
This procedure is for advanced users only. Incorrect use could damage or destroy your part database.

Syntax

WSubrecPA(mib, error, pname, ptype, pval)

Parameters

mib:
Integer4 expression (input) Specifies the MIB number of the

entity that will contain the PA subrecord.

error:
Integer variable (input/output) Returns the error condition:

0
no errors were found.

1
an IO error was found.

4
an invalid MIB number was given.

pname:
String expression of 8 characters (input)

Specifies the property name.

ptype:
String expression of 7 characters (input)

Specifies the property type.

pval:
String expression of 100 characters (input)

Specifies the property value.

G‑170
UPL Revision 6.0

Database Format

WSubrecPX

Type

Intrinsic Procedure
Database Access

Purpose

Writes a PX type subrecord to the PDF portion of the database. The PX subrecord holds data about the point. Write a PX subrecord when you are adding a new point entity to the database with the intrinsic procedure AddEnt.

WARNING:
This procedure is for advanced users only. Incorrect use could damage or destroy your part database.

Syntax

WSubrecPX(mib, error, pnt)

Parameters

mib:
Integer4 expression (input) Specifies the MIB number of the

entity that will contain the PX subrecord.

error:
Integer variable (input/output) Returns the error condition:

0
no errors were found.

1
an IO error was found.

4
an invalid MIB number was given.

pnt:
Coordinate expression (input) Specifies the X, Y, and Z

locations of the point in model coordinates.

G‑171
Database Format

Database Format

WSubrecTD

Type

Intrinsic Procedure
Database Access

Purpose

Writes a TD type subrecord to the PDF portion of the database. Ihe TD subrecord holds data about text format and orientation. Note that it does not hold the actual text itself, which is usually in a TX subrecord. Write a TD subrecord when you are adding a new text, dimension, label, or auxiliary entity to the database with the intrinsic procedure AddEnt.

WARNING:
This procedure is for advanced users only. Incorrect use could damage or destroy your part database.

Syntax

WSubreeTD(mib, error, transform(1), height, width, linesp,

just(1))

Parameters

mib:
Integer4 expression (input) Specifies the MIB number of the

entity that will contain the TD subrecord.

error:
Integer variable (input/output) Returns the error condition:

0
no errors were found.

1
an IO error was found.

4
an invalid MIB number was given.

transform:
Real array of 15 elements (input/output)

Specifies the text's view transform. This transformation

matrix defines the plane which the text lies in. Usually, this is

the view the arc was created in. In TD subrecords, only

elements 1 through 6 and 10 through 12 of the view transform

are used. Elements 1 through 6 are the X and Y axes cosine.

Elements 10 through 12 are the origin of the text.

height:
Real expression (input) Specifies text height in database units.

width:
Real expression (input)

Specifies the text width in database units.

linesp:
Real expression (input)

Specifies line spacing, in database units.

G‑172
UPL Revision 6.0

Database Format

just:
Integer array of 6 elements (input/output) Specifies text

justification. Values for just(1) are:

1 = left justification.

2 = right justification.

3 = center justification,

just(2) is an associativity flag for dimension text. Values are:

1 has D4 subrecord.

0 has no associativity

just(3) is MView number

just(4) is text font number

just(5) is text slant angle

just(6) is reserved; do not use.

G‑173
Database Format

Database Format

WSubrecTF

Type

Intrinsic Procedure
Database Access

Purpose

Writes a TF type subrecord to the PDF portion of the database. The TF subrecord holds data about a figure which is inserted into a part. Write a TF subrecord when you are adding a new figure instance entity to the database with the intrinsic procedure AddEnt.

WARNING:
This procedure is for advanced users only. Incorrect use could damage or destroy your part database.

Syntax

WSubrecTF(mib, error, transform(1), figuremib)

Parameters

mib:
Integer4 expression (input) Specifies the MIB number of the

entity that will contain the TF subrecord.

error:
Integer variable (input/output) Retums the error condition:

0
no errors were found.

1
an IO error was found.

4
an invalid MIB number was given.

figuremib:
Integer4 expression (input)

Specifies the MIB number of the figure image list entity.

transform:
Real array of 15 elements (input/output). The first nine

elements of the transformation matrix specify the figure

viewing matrix. Elements 10, 11, and 12 are the figure origin.

Elements 13, 14, and 15 are the figure's X, Y, and Z scale

factors.

G‑174
UPL Revision 6.0

Database Format

WSubrecTX

Type

Intrinsic Procedure
Database Access

Purpose

Writes a TX type subrecord to the PDF portion of the database. The TX subrecord holds the actual text of a text string entity. Write a TX subrecord when you are adding a new text, dimension, MView, curve, or surface entity to the database with the intrinsic procedure AddEnt.

WARNING:
This procedure is for advanced users only. Incorrect use could

damage or destroy your part database.

Syntax

WSubrecTX(mib, error, textstring)

Parameters

mib:
Integer4 expression (input) Specifies the MIB number of the

entity that will contain the TX subrecord.

error:
Integer variable (input/output) Returns the error condition:

0
no errors were found.

1
an IO error was found.

4
an invalid MIB number was given.

textstring:
String expression (input) Specifies the text string to be

modified.

G‑175
Database Format

Database Format

WSubrecVN

Type

Intrinsic Procedure
Database Access

Purpose

Writes a VN type subrecord to the PDF portion of the database. The VN subrecord holds data about a defined view. Write a VN subrecord when you are adding a new view entity to the database with the intrinsic procedure AddEnt.

WARNING:
This procedure is for advanced users only. Incorrect use could damage or destroy your part database.

Syntax

WSubrecVN(mib, error transform(1))

Parameters

mib:
Integer4 expression (input) Specifies the MIB number of the

entity that will contain the VN subrecord.

error:
Integer variable (input/output) Retums the error condition:

0
no errors were found.

1
an IO error was found.

4
an invalid MIB number was given.

transform:
Real array of 15 elements (input/output)

Specifies the view transformation matrix. Only the first nine

elements of transform are used. The offset and scaling factors are not written.

G‑176
UPL Revision 6.0

Database Format

WSubrecXH

Type

Intrinsie Procedure
Database Access

Purpose

Writes an XH type subrecord to the PDF portion of the database. The XH subrecord holds data about cross‑hatch lines. Write an XH subrecord when you are adding a new cross‑hatch entity to the database with the intrinsic procedure AddEnt.

WARNING:
This procedure is for advanced users only. Incorrect use could damage or destroy your part database.

Syntax

WSubrecXH(mib, error, endpoints, npnts)

Parameters

mib:
Integer4 expression (input)

Specifies the MIB number of the entity that will contain the

XH subrecord.

error:
Integer variable (input/output)

This parameter returns the error condition:

0
no errors were found.

1
an IO error was found.

4
an invalid MIB number was given.

endpoints:
Coordinate array of npnts elements (input/output)

Specifies the endpoints of the cross‑hatch lines. The contents

of this parameter is pairs of endpoints rather than the

cross‑hatch boundaries.

G‑177
Database Format

Database Format

WSubrecXN

Type

Intrinsic Procedure
Database Access

Purpose

Writes an XN type subrecord to the PDF portion of the database. The XN subrecord holds the vertices of a string entity. A string consists of two or more line segments. Write an XN subrecord when you are adding a new string, label, arrow, dimension, cross‑hatch, MView, curve or surface entity to the database with the intrinsic procedure AddEnt.

WARNING:
This procedure is for advanced users only. Incorrect use could damage or destroy your part database.

Syntax

WSubrecXN(mib, error, vertices(1), nvert)

Parameters

mib:
Integer4 expression (input)

Specifies the MIB number of the entity that will contain the

XN subrecord.

error:
Integer variable (input/output)

This parameter returns the error condition:

0
no errors were found.

1
an IO error was found.

4
an invalid MIB number was given.

vertices:
Coordinate array of nvert elements (input/output)

Specifies string vertiees. The order of the vertices in the array

is the order in which the string is created.

nvert:
Integer expression (input)

Specifies the number of vertices in the vertices parameter.

G‑178
UPL Revision 6.0

Database Format

WSubrecXZ

Type

Intrinsic Procedure
Database Access

Purpose

Writes an XZ type subrecord to the PDF portion of the database. The XZ subrecord holds data about the endpoints of a line. Write an XZ subrecord when you are adding a new line entity to the database with the intrinsic procedure AddEnt.
WARNING:
This procedure is for advanced users only. Incorrect use could damage or destroy your part database.

Syntax

WSubrecXZ(mib, error, pnt1, pnt2)

Parameters

mib:
Integer4 expression (input)

Specifies the MIB number of the entity that will contain the

XZ subrecord.

error:
Integer variable (input/output)

This parameter returns the error condition:

0
no errors were found.

1
an IO error was found.

4
an invalid MIB number was given.

pnt1:
Coordinate expression (input)

Specifies the first endpoint of the line.

pnt2:
Coordinate expression (input)

This parameter specifies the second endpoint of the line.

G‑179
Database Format

Database Format

Examples for Direct Database Access

Example: CIRCLE.UPL

‑‑‑

-- CIRCLE.UPL ‑‑ create a circle.

-- This program demonstrates direct database

-- access using UPL intrinsics. Note that a

-- circle contains the AC subrecord which has

-- it own UPL intrinsics.

‑‑‑

Proc Main

Const Integer ArcType = 3

Integer ColorC, LayerC, VvisC, FontC, GroupC

Integer4 Mib

Integer DataBuffer(5)

Integer Occur, Error, CPL

Real Transform(15), RadiusC, ABeg, AEnd

Coord Origin

Integer NDigs

-- start of code ‑‑

-- First, create the MIB sub‑record. Use system

-- default values for layer, color, etc.

-- The call to AddEnt actually adds the subrecord.

SysVarI(l, ColorC)

SysVarI(2, FontC)

SysVarI(3, LayerC)

SysVarI(1474, VvisC)

If
VvisC <> 0 then

SysVarI(4, VvisC)

Endif

SysVarI(1333, GroupC)

GroupC = GroupC ‑ 1

G‑180
UPL Revision 6.0

Database Format

DataBuffer(1)
= LayerC

DataBuffer(2)
= VvisC

DataBuffer(3)
= GroupC

DataBuffer(4)
= FontC

DataBuffer(5)
= ColorC

AddEnt(ArcType, DataBuffer(1), Mib, Error)

-- Now create the PDF subrecord and add it to

-- the database. Prompt user for radius and

-- origin. Use current CPL. Note that origin,

-- orientation of circle, and scaling factors (not

-- used here) are all stored in Transform array.

-- WSubrecAC actually adds PDF subrecord.

Accept RadiusC Prompt('Enter radius: ') NewLine

SysVarI(12, CPL)

GetCPL(CPL, TransForm(1))

Print 'Dig center of circle ',

GetDig(1, 1, Ndigs, Origin)

Transform(10) = Origin.X

Transform(11) = Origin.Y

Transform(12) = Origin.Z

ABeg = 0

AEnd = TwoPio

WSubrecAC(Mib, Error, Transform(1), RadiusC, \

ABeg, AEnd)

RpntEnt(Mib, 1, Error)

End Proc

G‑181
Database Format

Database Format

Example: CHCIRCLE.UPL

‑‑‑

-- CHCIRCLE.UPL ‑‑ change a circle.

-- This program demonstrates direct database

-- access using UPL intrinsics. Note that a

-- circle contains the AC subrecord which has

-- it own UPL intrinsics.

‑‑‑

Proc Main

Const Integer ArcType = 3

Integer ColorC, LayerC, VvisC, FontC, GroupC

Integer4 Mib(1)

Integer DataBuffer(8)

Integer Occur, Error, CPL

Real Transform(15), RadiusC, ABeg, AEnd

Coord Origin

Integer NDigs, Iend

Integer4 NEnts

-- start of code ‑‑

-- First, identify the circle using GetEnt. Only

-- allow cirlces to be digged.

EntMask(0)

EntMask(ArcType)

Print 'Digitize circle: ',

GetEnt(1, NEnts, Mib(1), IEnd)

Print

-- Next, read the MIB sub‑record using ReadEnt,

-- modify the data, and then modify the MIB

-- subrecord using WriteEnt.

-- Note that DataBuffer has different offsets

-- from the one used with AddEnt. Also, you could

-- access data directly in DataBuffer and not use

-- ColorC and LayerC.

G‑182
UPL Revision 6.0

Database Format

ReadEnt(Mib(1), DataBuffer(1))

LayerC = DataBuffer(4)

ColorC = DataBuffer(8)

Print 'Circle color is ',ColorC,'.'

Print 'Circle layer is ',LayerC,'.'

Accept ColorC Prompt('New color: ') NewLine

Accept LayerC Prompt('New layer: ') NewLine

DataBuffer(4) = LayerC

DataBuffer(8) = ColorC

WriteEnt(Mib(1), DataBuffer(1))

-- Now read the PDF subrecord using RSubrecAC,

-- modify the data, and then modify the

-- subrecord with MSubrecAC.

Occur = 1 RSubrecAC(Mib(1), Occur, Error,

Transform(1), RadiusC, ABeg, AEnd)

Print 'Current radius is ',RadiusC, '.'

Accept RadiusC Prompt('New radius: ') NewLine

Print 'Dig new center of circle: ',

GetDig(1, 1, Ndigs, Origin)

Transform(10) = Origin.X

Transform(11) = Origin.Y

Transform(12) = Origin.Z

MSubrecAC(Mib(1), Occur, Error, \

Transform(1), RadiusC, ABeg, AEnd)

RpntEnt(Mib(1), 1, Error)

End Proc

G‑183
Database Format

Database Format

Example: ELLIP.UPL

‑‑‑

-- ELLIP.UPL ‑‑ create an ellipse.

-- This program demonstrates direct database

-- access using UPL intrinsics. Note that an

-- ellipse contains the EP subrecord which

-- DOES NOT it own UPL intrinsics. Instead,

-- use the code provided in this appendix

-- listed as 'EP subrecord definition'.

-- In this example it is read (via 'include'

-- statement) from a file named 'epsubrec.inc'.

‑‑‑

Proc Main

$Include 'epsubrec.inc'

Const Integer EllipseType = 14

Integer ColorC, LayerC, VvisC, FontC, GroupC

Integer4 Mib

Integer DataBuffer(5)

Integer Occur, Error, CPL

Coord Origin

Integer NDigs

-- start of code ‑‑

-- First, create the MIB sub‑record. Use system

-- default values for layer, color, etc.

-- The call to AddEnt actually adds the subrecord.

SysVarI(l, ColorC)

SysVarI(2, FontC)

SysVarI(3, LayerC)

SysVarI(1474, VvisC)

If
VvisC <> 0 then

SysVarI(4, VvisC)

Endif

SysVarI(1333, GroupC)

GroupC = GroupC ‑ 1

G‑184
UPL Revision 6.0

Database Format

DataBuffer(1) = LayerC

DataBuffer(2) = VvisC

DataBuffer(3) = GroupC

DataBuffer(4) = FontC

DataBuffer(5) = ColorC

AddEnt(EllipseType, DataBuffer(1), Mib, Error)

-- Now create the PDF subrecord and add it to

-- the database. Prompt user for radius and

-- origin. Use current CPL. Note that origin,

-- orientation of ellipse, and scaling factors

-- (not used here) are all stored in Transform

-- array. PutSrR actually adds PDF subrecord.

Accept MajorRadEP Prompt('Enter major axis: ')\

NewLine

Accept MinorRadEP Prompt('Enter minor axis: ')\

NewLine

SysVarI(12, CPL)

GetCPL(CPL, EPsubrec(1))

Print 'Dig center of ellipse: ',

GetDig(1, 1,
Ndigs, Origin)

TranslateEP
Origin

StartAngEP
0

EndAngEP = TwoPio

PutSrR(Mib, 'EP', 64, EPsubrec(1), Error)

RpntEnt(Mib, 1, Error)

End Proc

G‑185
Database Format

Database Format

Example: CHELLIP.UPL

‑‑‑

-- CHELLIP.UPL ‑‑ change an ellipse.

-- This program demonstrates direct database

-- access using UPL intrinsics. Note that an

-- ellipse contains the EP subrecord which

-- DOES NOT it own UPL intrinsics. Instead,

-- use the code provided in this appendix

-- listed as 'EP subrecord definition'.

-- In this example it is read (via 'include'

-- statement) from a file named 'epsubrec.inc'.

‑‑‑

Proc Main

$Include 'epsubrec.inc'

Const Integer EllipseType = 14

Integer ColorC, LayerC, VvisC, FontC, GroupC

Integer4 Mib(1)

Integer DataBuffer(8)

Integer Occur, Error, CPL

Coord Origin

Integer NDigs, Iend, NBytes

Integer4 NEnts

String EPrec:2
'EP'

-- start of code --

-- First, identify the ellipse using GetEnt.

-- Only allow ellipses to be digged.

EntMask(0)

EntMask(EllipseType)

Print 'Digitize ellipse: ',

GetEnt(1, NEnts, Mib(1), IEnd)

Print

G‑186
UPL Revision 6.0

Database Format

-- Next, read the MIB sub‑record using ReadEnt,

-- modify the data, and then modify the MIB

-- subrecord using WriteEnt.Note that DataBuffer

-- has different offsets from the one used with

-- AddEnt. Also, you could access data directly in

-- DataBuffer and not use ColorC and LayerC.

ReadEnt(Mib(1), DataBuffer(1))

LayerC = DataBuffer(4)

ColorC = DataBuffer(8)

Print 'Circle color is ', ColorC ,'.'

Print 'Circle layer is ', LayerC ,'.'

Accept ColorC Prompt('New color: ') NewLine

Accept LayerC Prompt('New layer: ') NewLine

DataBuffer(4) = LayerC

DataBuffer(8) = ColorC

WriteEnt(Mib(1), DataBuffer(1))

-- Now read the PDF subrecord using GetSrR, modify

-- the data,then modify the subrecord with ModSrR.

Occur = 1

GetSrR(Mib(1), EPrec, Occur, 64, NBytes, \

EPsubrec(1), Error)

Print 'Current major axis is ',\

MajorRadEP, '.'

Accept MajorRadEP Prompt('New major axis:')\

NewLine

Print 'Current minor axis is ',\

MinorRadEP, '.'

Accept MinorRadEP Prompt('New minor axis:')\

NewLine

Print 'Dig new center of ellipse: ',

GetDig(1, 1, Ndigs, Origin)

TranslateEP = Origin

ModSrR(Mib(1), 'EP', Occur, 64, EPsubrec(1), \

Error)

RpntEnt(Mib(1), 1, Error)

End Proc

G‑187
Database Format

