
 
 
 

Personal Designer 
 

User Programming Language  
(UPL) 

 
Revision 6.0 

 
 

User Reference Guide 

 
 

Appendix E 

 

Internal Data Format 

 
 
 
 



Internal Data Format 

This appendix contains the format of data used by UPL for: 
 

Variables 
Files: text and binary 
System date and time 
Transformation matrix 

 

Variables 

A variable's data is stored in memory according to its data type. The table 
below lists for each data type, the amount of memory occupied by a variable, 
and its format. 
 
Integer 2 bytes <Low byte> <High byte> 
  Bit 15-8 Bit 7-0 
Integer4 4 bytes 
 
Real 4 bytes <Sign bit> <Exponent> 
  Bit 31 Bits 30-23 
  <Significant> 
  Bits 22-0 
 
Boolean 2 bytes Same as Integer (0 = False, 1 = 
  True) 
 
String 4 bytes + 

declared maximum 
length 

<Max length> <Current length> 
Integer Integer 
<String data> 
'Max length' bytes 

 
Coord 12 bytes 3 Real numbers (X, Y, Z) 
 
 
 
 
 
 
 
 
 
 
 
 
E-3 Internal Data Format 



Internal Data Format 

  
File 

 
22 bytes 

 
At offset 
0 –  Operating system file handle # 
2 –  File position byte pointer 
6 –  Number of bytes to 

   read/write 
8 –   Error number 
10 – File record length 
12 – Format type (0=Binary, 1=Text) 
14 – Open tlag 
16 – End – of – line flag 
18 – End – of – file flag 
20 – Written to tlag 

 
Array variables require an additional two bytes which contain the number 
of bytes between the start of the first array element and the start of the last 
array element. This number can be treated as an integer and is used for 
array bounds checking. Following this comes the array elements in 
sequence. Each array element will use the same format as a variable of 
that data type (see above). Files cannot be stored in an array. 
 

<byte offset to beginning of last element (2 bytes)> 
<array element l > 
<array element 2> 
<array element 3> 
 
<array element n> 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
E-4                 UPL Revision 6.0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Internal Data Format 

String arrays vary slightly from this in that the 
maximum length is not repeated for each element. 
The format for a string array is: 
 

<byte offset to beginning of last element (2 bytes)> 
<Maximum declared length of all strings in array (2 bytes)> 
<element 1: Current length (2 bytes) 

Characters (one byte per character)> 
<element 2: Current length (2 bytes) 

Characters (one byte per character)> 
<element 3: Current length (2 bytes) 

Characters (one byte per character)) 
 

<element n: Current length (2 bytes) 
Characters (one byte per character)> 
 

File Formats 

Data is stored in binary files using the format for 
variables, listed above. Note that this is the format 
used by UPL programs to use the Read and Write 
statements. Binary files written by other programs 
may use a different format. 
 
Data is stored in text files as characters. When 
reading text files, strings of characters are scanned 
from the file and then converted to the appropriate 
data type for the specified variables. The following 
data rules are fo]lowed for scanning the variables: 
 
For character strings, start at the current file pointer and read the shorter of: 
 

1) the specified field width 
2) the declared maximum string length. 
3) 400 characters 
 

If the specified field width is greater than the declared length of the string, 
the file pointer will be updated to the field width but the string will only be 
filled to its maximum declared size. If no field width is given and a <CR> is 
encountered before the maximum length is reached, it will stop scanning. 
 
 
 
 
 
 
 
E–5               Internal Data Format 

 
 



Internal Data Format 

For integers and reals, start at the current file pointer and scan for the 
following items: 
 

1) any leading blanks and/or tabs and ignore them 
2) a+ or – 
3) a series of digits in range of 0 – 9 
4) a 
5) more digits in range of 0 – 9 
6) aneorE 
7) a+or – 
81 another series of digits in range of 0 – 9 
 

Note that only 3) is mandatory and a given field width will stop the 
scanning. If the specified variable is a real variable and you scan an 
integer, it will be converted. If the specified variable is an integer and you 
scan a real, it will be converted by truncation. All integer values must lie in 
the range of 
– 32,768 to 32,767 or the closest of these values will be suhstituted. 
Integer4 values must lie between – 2,147,483,648 and 2,147,483,647. 
 
For coordinate data, the X, Y, and Z fields are first initialized to zero. Next 
scan as follows: 
 

1) any leading blanks and tabs and/or ignore them 
2) a [ as the first non – blank character 
3) X coordinate: a real or integer number as described above 
4) a comma 
5) Y coordinate: another real or integer as described above 
6) another comma 
7) Z coordinate: another real or integer as described above 
8) a] 
 

The [ and ] are mandatory. All coordinates are optional. If only two are 
given it will be assumed to be X and Y. If only one is given it will be X. If 
given they must be separated by commas. 
 
For Boolean data, scan as follows: 
 

1) any 1eading blanks and/or tabs and ignore them 2) a T or a t as the 
first non – blank 
 

If a T or a t is found, the value will be TRUE; 
otherwise it is assumed to be false. 
 
 
 
E–6                  UPL Revision 6.0 

 
 



Internal Data Format 

System Date and Time 

Some intrinsic procedures such as RSubrecIL, MSubrecIL, WSubrecIL use 
the system time and date. These values are encoded into two hytes. The 
bits are ordered from 15 to 0, from left to right. These are the formats: 
  
System Time: <Hours> 

Bit 15 – 11 

 
<Min> 
Bit 10–5 

 
<Sec(2 sec.increments>  
Bit 4 – 0 

 
System Date:<Year(since 1980)> <Month> <Day> 

Bit 15 – 9 Bit 8 – 5 Bit 4 – 0 
 

Transformation Matrix 

Many intrinsic procedures have a parameter known as “Transform” in their 
description in Chapter 4 of this manual. This represents the transformation 
matrix used by Personal Designer. 
 
When you insert entities into a part in Personal Designer, the data 
describing the entities is stored in the database. Even if you are working in 
different views or construction planes, the coordinate data is always stored 
in reference to the X, Y, and Z axis known as the model coordinate 
system. Personal Designer automatically converts data from the local 
coordinate system defined by the construction plane to model coordinates. 
This conversion is often referred to as “mapping” coordinates from one 
”space” to another. For example, ”mapping from CPL space to model 
space.” 
 
A transformation matrix is a matrix of numbers which is used to convert the 
data from the X, Y, and Z axis of model coordinates to the axes of your 
local coordinate system (CPL) and vice versa. 
 
Many UPL intrinsic procedures require this matrix. You should declare an 
array of 15 real elements in your program and use this array to hold the 
transformation matrix. You rarely have to manipulate elements of the 
transformation matrix. In most situations, it will be returned from another 
procedure as an array parameter of 15 real numhers. The array can then 
be used to pass the matrix to another intrinsic procedure which requires it. 
 
 
 
 
 
 
 
  
E–7             Internal Data Format 

 
 



Internal Data Format 

Example: 
 
proc main 
 
real Transform(15) 
 
GetCPL(7, Transform(1)) 
 
end proc 
 
 
Below is a description of the contents of the Transform array: 
 
The first nine elements make up three sets of three real numbers. These 
sets can be thought of as unit vectors which describe the orientation of the 
local coordinate system’s X, Y, and Z axes to the model coordinate system. 
 

xx xy xz – unit vector for local system's x – axis 
 
yz yy yz – unit vector for local system’s y – axis 
 
zx zy zz – unit vector for local system’s z – axis 
 

The next three elements define a vector which gives the offset of the local 
coordinate system’s origin from that of the model coordinate system. 
 

offx offy offz 
 

The last three elements give the scaling factors about the model coordinate 
system’s axes. 
 

SCl X     SCl Y   SCl Z 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
E–8                UPL Revision 6.0 

 
 

 


